Early-life establishment of tolerance to commensal bacteria at barrier surfaces carries enduring implications for immune health but remains poorly understood. Here, we showed that tolerance in skin was controlled by microbial interaction with a specialized subset of antigen-presenting cells. More particularly, CD301b type 2 conventional dendritic cells (DCs) in neonatal skin were specifically capable of uptake and presentation of commensal antigens for the generation of regulatory T (Treg) cells.
View Article and Find Full Text PDFFLG variants underlie ichthyosis vulgaris and increased risk of atopic dermatitis, conditions typified by disruption of the skin microbiome and cutaneous immune response. Yet, it remains unclear whether neonatal skin barrier compromise because of FLG deficiency alters the quality of commensal-specific T cells and the functional impact of such responses. To address these questions, we profiled changes in the skin barrier and early cutaneous immune response of neonatal C57BL/6 Flg and wild-type mice using single-cell RNA sequencing, flow cytometry, and other modalities.
View Article and Find Full Text PDFResident microbes in skin and gut predominantly impact local immune cell function during homeostasis. However, colitis-associated neutrophilic skin disorders suggest possible breakdown of this compartmentalization with disease. Using a model wherein neonatal skin colonization by Staphylococcus epidermidis facilitates generation of commensal-specific tolerance and CD4 regulatory T cells (Tregs), we ask whether this response is perturbed by gut inflammation.
View Article and Find Full Text PDFMicrobes can boost cutaneous immune defense and skin reparative capacity. However, mechanistic understanding, especially of the latter, remains sparse. In this issue of Cell Host & Microbe, Wang et al.
View Article and Find Full Text PDFBackground: Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is expressed on mast cells and eosinophils, but information about Siglec-8 expression and function in the lung is limited. A humanized antibody, AK002, targeting Siglec-8 is undergoing development for treatment of diseases associated with mast cell and eosinophil-driven inflammation.
Objective: To characterize Siglec-8 expression in the airway in asthma and determine whether antibodies that target Siglec-8 (S8mAbs) can decrease airway eosinophils in asthma or inhibit lung mast cell activation.
Background: Whether microbiome characteristics of induced sputum or oral samples demonstrate unique relationships to features of atopy or mild asthma in adults is unknown.
Objective: We sought to determine sputum and oral microbiota relationships to clinical or immunologic features in mild atopic asthma and the impact on the microbiota of inhaled corticosteroid (ICS) treatment administered to ICS-naive subjects with asthma.
Methods: Bacterial microbiota profiles were analyzed in induced sputum and oral wash samples from 32 subjects with mild atopic asthma before and after inhaled fluticasone treatment, 18 atopic subjects without asthma, and 16 nonatopic healthy subjects in a multicenter study (NCT01537133).
The host must develop tolerance to commensal microbes and protective responses to infectious pathogens, yet the mechanisms enabling a privileged relationship with commensals remain largely unknown. Skin colonization by commensal Staphylococcus epidermidis facilitates immune tolerance preferentially in neonates via induction of antigen-specific regulatory T cells (Tregs). Here, we demonstrate that this tolerance is not indiscriminately extended to all bacteria encountered in this early window.
View Article and Find Full Text PDFType 2 inflammation occurs in a large subgroup of asthmatics, and novel cytokine-directed therapies are being developed to treat this population. In mouse models, interleukin-33 (IL-33) activates lung resident innate lymphoid type 2 cells (ILC2s) to initiate airway type 2 inflammation. In human asthma, which is chronic and difficult to model, the role of IL-33 and the target cells responsible for persistent type 2 inflammation remain undefined.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are important regulators of cell fate decisions in immune responses. They act by coordinate repression of multiple target genes, a property that we exploited to uncover regulatory networks that govern T helper-2 (Th2) cells. A functional screen of individual miRNAs in primary T cells uncovered multiple miRNAs that inhibited Th2 cell differentiation.
View Article and Find Full Text PDF