Over the past three decades DNA has emerged as an exceptional molecular building block for nanoconstruction due to its predictable conformation and programmable intra- and intermolecular Watson-Crick base-pairing interactions. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures of increasing complexity. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in many directions, such as directed material assembly, structural biology, biocatalysis, DNA computing, nanorobotics, disease diagnosis, and drug delivery.
View Article and Find Full Text PDFCONSPECTUS: DNA nanotechnology is one of the most flourishing interdisciplinary research fields. DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales. They can be used as scaffolds for organizing other nanoparticles, proteins, and chemical groups, leveraging their functions for creating complex bioinspired materials that may serve as smart drug delivery systems, in vitro or in vivo biomolecular computing platforms, and diagnostic devices.
View Article and Find Full Text PDFWe use single-particle fluorescence resonance energy transfer (FRET) to show that organizing oligonucleotide probes into patterned two-dimensional arrays on DNA origami nanopegboards significantly alters the kinetics and thermodynamics of their hybridization with complementary targets in solution. By systematically varying the spacing of probes, we demonstrate that the rate of dissociation of a target is reduced by an order of magnitude in the densest probe arrays. The rate of target binding is reduced less dramatically, but to a greater extent than reported previously for one-dimensional probe arrays.
View Article and Find Full Text PDFUnderstanding the thermodynamic properties of complex DNA nanostructures, including rationally designed two- and three-dimensional (2D and 3D, respectively) DNA origami, facilitates more accurate spatiotemporal control and effective functionalization of the structures by other elements. In this work fluorescein and tetramethylrhodamine (TAMRA), a Förster resonance energy transfer (FRET) dye pair, were incorporated into selected staples within various 2D and 3D DNA origami structures. We monitored the temperature-dependent changes in FRET efficiency that occurred as the dye-labeled structures were annealed and melted and subsequently extracted information about the associative and dissociative behavior of the origami.
View Article and Find Full Text PDFWe report a scaffold-free approach in which four- and six-helix DNA bundle units, assembled from a small number of single stranded DNA oligonucleotides precisely arranged in networks of contiguous and semicrossover strands, are connected into DNA nano rings. Nearly uniform structures with well-defined diameters of 53 ± 7, 81 ± 9, 85 ± 8, and 166 ± 13 nm were achieved by introducing uniform, in-plane curvature to the repeating units. We demonstrate that precise higher order assemblies can be achieved by fine tuning the particular features of the individual building blocks.
View Article and Find Full Text PDFEngineering wireframe architectures and scaffolds of increasing complexity is one of the important challenges in nanotechnology. We present a design strategy to create gridiron-like DNA structures. A series of four-arm junctions are used as vertices within a network of double-helical DNA fragments.
View Article and Find Full Text PDFWe employ the single-particle fluorescence nanoscopy technique points accumulation for imaging in nanoscale topography (PAINT) using site-specific DNA probes to acquire two-dimensional density maps of specific features patterned on nanoscale DNA origami pegboards. We show that PAINT has a localization accuracy of ~10 nm that is sufficient to reliably distinguish dense (>10(4) features μm(-2)) sub-100 nm patterns of oligonucleotide features. We employ two-color PAINT to follow enzyme-catalyzed modification of features on individual origami and to show that single nanopegboards exhibit stable, spatially heterogeneous probe-binding patterns, or "fingerprints.
View Article and Find Full Text PDFThe assembly and isolation of DNA oligonucleotide-functionalized gold nanoparticles (AuNPs) has become a well-developed technology that is based on the strong bonding interactions between gold and thiolated DNA. However, achieving DNA-functionalized semiconductor quantum dots (QDs) that are robust enough to withstand precipitation at high temperature and ionic strength through simple attachment of modified DNA to the QD surface remains a challenge. We report the synthesis of stable core/shell (1-20 monolayers) QD-DNA conjugates in which the end of the phosphorothiolated oligonucleotide (5-10 nucleotides) is "embedded" within the shell of the QD.
View Article and Find Full Text PDFScaffolded DNA origami is a widely used technology for self-assembling precisely structured nanoscale objects that contain a large number of addressable features. Typical scaffolds are long, single strands of DNA (ssDNA) that are folded into distinct shapes through the action of many, short ssDNA staples that are complementary to several different domains of the scaffold. However, sources of long single-stranded DNA are scarce, limiting the size and complexity of structures that can be assembled.
View Article and Find Full Text PDFAlthough a multitude of promising anti-cancer drugs have been developed over the past 50 years, effective delivery of the drugs to diseased cells remains a challenge. Recently, nanoparticles have been used as drug delivery vehicles due to their high delivery efficiencies and the possibility to circumvent cellular drug resistance. However, the lack of biocompatibility and inability to engineer spatially addressable surfaces for multi-functional activity remains an obstacle to their widespread use.
View Article and Find Full Text PDFThe ability to generate precisely designed molecular networks and modulate the surrounding environment is vital for fundamental studies of chemical reactions. DNA nanotechnology simultaneously affords versatility and modularity for the construction of tailored molecular environments. We systematically studied the effects of steric crowding on the hybridization of a 20 nucleotide (nt) single-stranded DNA (ssDNA) target to a complementary probe strand extended from a rectangular six-helix tile, where the number and character of the surrounding strands influence the molecular environment of the hybridization site.
View Article and Find Full Text PDFThe specificity of Watson-Crick base pairing, unique mechanical properties of DNA, and intrinsic stability of DNA double helices makes DNA an ideal material for the construction of dynamic nanodevices. Rationally designed strand displacement reactions can be used to produce dynamic reconfiguration of DNA nanostructures postassembly. Here we describe a 'fold-release-fold' strategy of multiple strand displacement and hybridization reactions to reconfigure a simple DNA origami structure into a complex, quasifractal pattern, demonstrating a complex transformation of DNA nanoarchitectures.
View Article and Find Full Text PDFDesigning and constructing multichromophoric, artificial light-harvesting antennas with controlled interchromophore distances, orientations, and defined donor-acceptor ratios to facilitate efficient unidirectional energy transfer is extremely challenging. Here, we demonstrate the assembly of a series of structurally well-defined artificial light-harvesting triads based on the principles of structural DNA nanotechnology. DNA nanotechnology offers addressable scaffolds for the organization of various functional molecules with nanometer scale spatial resolution.
View Article and Find Full Text PDFThe spatially controlled positioning of functional materials by self-assembly is one of the fundamental visions of nanotechnology. Major steps towards this goal have been achieved using DNA as a programmable building block. This tutorial review will focus on one of the most promising methods: DNA origami.
View Article and Find Full Text PDFWe present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks.
View Article and Find Full Text PDFDNA nanotechnology allows the design and construction of nanoscale objects that have finely tuned dimensions, orientation, and structure with remarkable ease and convenience. Synthetic DNA nanostructures can be precisely engineered to model a variety of molecules and systems, providing the opportunity to probe very subtle biophysical phenomena. In this study, several such synthetic DNA nanostructures were designed to serve as models to study the binding behavior of polyvalent molecules and gain insight into how small changes to the ligand/receptor scaffolds, intended to vary their conformational flexibility, will affect their association equilibrium.
View Article and Find Full Text PDFDNA-based self-assembly is a unique method for achieving higher-order molecular architectures made possible by the fact that DNA is a programmable information-coding polymer. In the past decade, two main types of DNA nanostructures have been developed: branch-shaped DNA tiles with small dimensions (commonly up to ∼20 nm) and DNA origami tiles with larger dimensions (up to ∼100 nm). Here we aimed to determine the important factors involved in the assembly of DNA origami superstructures.
View Article and Find Full Text PDFResearchers have been using DNA for the rational design and construction of nanoscale objects for nearly 30 years. Recently, 'scaffolded DNA origami' has emerged as one of the most promising assembly techniques in DNA nanotechnology with a broad range of applications. In the past two years alone, DNA origami has been used to assemble water-soluble probe tiles for label-free RNA hybridization, to study single-molecule chemical reactions, to probe distance-dependent multivalent ligand-protein binding effects, and to organize a variety of relevant molecules including proteins, carbon nanotubes, and metal nanoparticles.
View Article and Find Full Text PDFTraditional robots rely for their function on computing, to store internal representations of their goals and environment and to coordinate sensing and any actuation of components required in response. Moving robotics to the single-molecule level is possible in principle, but requires facing the limited ability of individual molecules to store complex information and programs. One strategy to overcome this problem is to use systems that can obtain complex behaviour from the interaction of simple robots with their environment.
View Article and Find Full Text PDFJ Am Chem Soc
September 2009
We report the design and construction of a nanometer-sized tetrahedron from a single strand of DNA that is 286 nucleotides long. The formation of the tetrahedron was verified by restriction enzyme digestion, Ferguson analysis, and atomic force microscopy (AFM) imaging. We further demonstrate that synthesis of the tetrahedron can be easily scaled up through in vivo replication using standard molecular cloning techniques.
View Article and Find Full Text PDFA fundamental understanding of molecular self-assembly processes is important for improving the design and construction of higher-order supramolecular structures. DNA tile based self-assembly has recently been used to generate periodic and aperiodic nanostructures of different geometries, but there have been very few studies that focus on the thermodynamic properties of the inter-tile interactions. Here we demonstrate that fluorescently-labeled multihelical DNA tiles can be used as a model platform to systematically investigate multivalent DNA hybridization.
View Article and Find Full Text PDFWe demonstrate the versatility of a DNA tile system for oligonucleotide hybridization assay and explored the detection limit of the probe tiles for DNA targets of varied lengths.
View Article and Find Full Text PDFNanomedicine (Lond)
August 2008
Aims: Herein, we report our work to improve the detection sensitivity of a DNA-tile-based and self-assembled biosensing platform. This was achieved using hybridization chain reaction (HCR) as a signal amplifier on a water-soluble self-assembled DNA nanoarray carrying detection probes.
Materials & Methods: The fluorescence enhancement on the addition of specific detection targets was observed directly by confocal fluorescence microscopy.