Apoptosis is a hallmark of motoneuron diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) [1]. In a widely used mouse model of motoneuron disease (progressive motor neuronopathy or pmn) [2-4], transgenic expression of the anti-apoptotic bcl-2 gene [5] or treatment with glial cell-derived neurotrophic factor [6] prevents the apoptosis of the motoneuron soma; however, they were unable to affect the life span of the animals. The goal of the present work was to determine whether the pmn phenotype could be rescued by means of a gene that inhibits axon degeneration.
View Article and Find Full Text PDFActivity-dependent and -independent signals collaborate to regulate synaptogenesis, but their relative contributions are unclear. Here, we describe the formation of neuromuscular synapses at which neurotransmission is completely and specifically blocked by mutation of the neurotransmitter-synthesizing enzyme choline acetyltransferase. Nerve terminals differentiate extensively in the absence of neurotransmitter, but neurotransmission plays multiple roles in synaptic differentiation.
View Article and Find Full Text PDF