Bacillus anthracis lethal toxin (LT) causes vascular collapse and high lethality in BALB/cJ mice, intermediate lethality in C57BL/6J mice, and no lethality in DBA/2J mice. We found that adrenalectomized (ADX) mice of all three strains had increased susceptibility to LT. The increased susceptibility of ADX-DBA/2J mice was not accompanied by changes in their macrophage sensitivity or cytokine response to LT.
View Article and Find Full Text PDFAnthrax lethal factor (LF) is a non-competitive repressor of glucocorticoid (GR) and progesterone receptor (PR) transactivation. This repression was shown to be specific and selective and was dependent on promoter context and receptor subtype. Anthrax lethal toxin (LeTx) selectively repressed GR-mediated transactivation but not transrepression.
View Article and Find Full Text PDFDeath from anthrax has been reported to occur from systemic shock. The lethal toxin (LeTx) is the major effector of anthrax mortality. Although the mechanism of entry of this toxin into cells is well understood, its actions once inside the cell are not as well understood.
View Article and Find Full Text PDFThe hypothalamic-pituitary-adrenal (HPA) axis is activated during many bacterial and viral infections, resulting in an increase in circulating glucocorticoid levels. This HPA axis activation and glucocorticoid response are critical for the survival of the host, as demonstrated by the fact that removal of the HPA axis (by adrenalectomy or hypophysectomy) or glucocorticoid receptor (GR) blockade enhances the severity of the infection and in some cases enhances the mortality rate. Replacement with a synthetic glucocorticoid reverses these effects by reducing the severity of the infection and provides protection against lethal effects.
View Article and Find Full Text PDFInflammation and inflammatory responses are modulated by a bidirectional communication between the neuroendocrine and immune system. Many lines of research have established the numerous routes by which the immune system and the central nervous system (CNS) communicate. The CNS signals the immune system through hormonal pathways, including the hypothalamic-pituitary-adrenal axis and the hormones of the neuroendocrine stress response, and through neuronal pathways, including the autonomic nervous system.
View Article and Find Full Text PDFWe report here that a bacterial toxin, anthrax lethal toxin (LeTx), at very low concentrations represses glucocorticoid receptor (GR) transactivation in a transient transfection system and the activity of an endogenous GR-regulated gene in both a cellular system and an animal model. This repression is noncompetitive and does not affect ligand binding or DNA binding, suggesting that anthrax lethal toxin (LeTx) probably exerts its effects through a cofactor(s) involved in the interaction between GR and the basal transcription machinery. LeTx-nuclear receptor repression is selective, repressing GR, progesterone receptor B (PR-B), and estrogen receptor alpha (ERalpha), but not the mineralocorticoid receptor (MR) or ERbeta.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
November 2002
Glucocorticoid resistance is a problem in the treatment of many diseases. One possible factor involved in the modulation of a glucocorticoid response is the export of glucocorticoids out of the cell. It has been shown that multidrug resistance protein 1 (MDR1, ABCB1), a member of the ABC family, is capable of transporting some glucocorticoids.
View Article and Find Full Text PDFA reciprocal regulation exists between the central nervous and immune systems through which the CNS signals the immune system via hormonal and neuronal pathways and the immune system signals the CNS through cytokines. The primary hormonal pathway by which the CNS regulates the immune system is the hypothalamic-pituitary-adrenal axis, through the hormones of the neuroendocrine stress response. The sympathetic nervous system regulates the function of the immune system primarily via adrenergic neurotransmitters released through neuronal routes.
View Article and Find Full Text PDFIn the present study, we investigated the inducibility of the drug conjugate transporter genes MRP1 and MRP2 by redox-active compounds such as tertiary butylated hydroquinone (tBHQ) and quercetin and by chemicals known to activate the pregnane X receptor (PXR) such as rifampicin and clotrimazol and by the metalloid compound arsenite. The human MRP2 gene was found to be inducible in HepG2 cells by rifampicin, clotrimazol, arsenite and tBHQ. As MRP1 expression is extremely low in HepG2 cells, its inducibility was studied in MCF-7 cells.
View Article and Find Full Text PDF