Publications by authors named "Jeanene M De Avila"

Recent foodborne outbreaks and recalls involving and -contaminated peaches have caused significant economic losses to the peach industry. This study evaluated the effectiveness of chlorine, a commonly used sanitizer in the fresh produce industry, against and and its ability to control cross-contamination in fresh peaches. Peaches inoculated with or (~6 log CFU/peach) were treated with 50-150 mg/L of free chlorine (FC, pH6.

View Article and Find Full Text PDF

Due to the exclusive maternal transmission, oocyte mitochondrial dysfunction reduces fertility rates, affects embryonic development, and programs offspring to metabolic diseases. However, mitochondrial DNA (mtDNA) are vulnerable to mutations during oocyte maturation, leading to mitochondrial nucleotide variations (mtSNVs) within a single oocyte, referring to mtDNA heteroplasmy. Obesity (OB) accounts for more than 40% of women at the reproductive age in the USA, but little is known about impacts of OB on mtSNVs in mature oocytes.

View Article and Find Full Text PDF

DNA methylation is influenced by various exogenous factors such as nutrition, temperature, toxicants, and stress. Bulls from the Pacific Northwest region of the United States and other northern areas are exposed to extreme cold temperatures during winter. However, the effects of cold exposure on the methylation patterns of bovine sperm remain unclear.

View Article and Find Full Text PDF

Background: Following muscle injury, fibro-adipogenic progenitors (FAPs) are rapidly activated and undergo apoptosis at the resolution stage, which is required for proper muscle regeneration. When excessive FAPs remain, it contributes to fibrotic and fatty infiltration, impairing muscle recovery. Mechanisms controlling FAP apoptosis remain poorly defined.

View Article and Find Full Text PDF

Obesity in pregnancy is currently the leading cause of gestational complications for the mother and fetus worldwide. Maternal obesity (MO), common in western societies, impedes development of intestinal epithelium in the fetuses, which causes disorders in the nutrient absorption and intestine-related immune responses in offspring. Here, using a mouse model of maternal exercise (ME), we found that exercise during pregnancy protects the impairment of fetal intestinal morphometrical formation and epithelial development due to MO.

View Article and Find Full Text PDF

Collagen is the main component of connective tissue surrounding adipocytes. Collagen cross-linking affects adipose remodeling, which is crucial for maintaining function and metabolic homeostasis of adipose tissue. However, the effects of obesity on collagen cross-linking and adipose fibrosis remain to be examined.

View Article and Find Full Text PDF

Background: Sarcolipin and uncoupling protein 3 (UCP3) mediate muscle-based non-shivering thermogenesis (NST) to improve metabolic homeostasis. The impacts of maternal obesity (MO) and maternal exercise (ME) on NST in offspring muscle remain unexamined.

Methods: Female mice were fed with a control diet or high fat diet to induce obesity.

View Article and Find Full Text PDF

Maternal obesity (MO) predisposes offspring to obesity and metabolic disorders but little is known about the contribution of offspring brown adipose tissue (BAT). We find that MO impairs fetal BAT development, which persistently suppresses BAT thermogenesis and primes female offspring to metabolic dysfunction. In fetal BAT, MO enhances expression of Dio3, which encodes deiodinase 3 (D3) to catabolize triiodothyronine (T3), while a maternally imprinted long noncoding RNA, Dio3 antisense RNA (Dio3os), is inhibited, leading to intracellular T3 deficiency and suppression of BAT development.

View Article and Find Full Text PDF

Succinic acid widely exists in foods and is used as a food additive. Succinate not only serves as an energy substrate, but also induces protein succinylation. Histone succinylation activates gene transcription.

View Article and Find Full Text PDF

Obesity during pregnancy leads to adverse health outcomes in offspring. However, the initial effects of maternal obesity (MO) on embryonic organogenesis have yet to be thoroughly examined. Using unbiased single-cell transcriptomic analyses (scRNA-seq), the effects of MO on the myogenic process is investigated in embryonic day 9.

View Article and Find Full Text PDF

Maternal stress during pregnancy is prevailing worldwide, which exposes fetuses to intrauterine hyper glucocorticoids (GC), programming offspring to obesity and metabolic diseases. Despite the importance of brown adipose tissue (BAT) in maintaining long-term metabolic health, impacts of prenatal hyper GC on postnatal BAT thermogenesis and underlying regulations remain poorly defined. Pregnant mice were administrated with synthetic GC dexamethasone (DEX) at levels comparable to fetal GC exposure of stressed mothers.

View Article and Find Full Text PDF

Epidemiological studies robustly show the beneficial effects of maternal exercise in reducing maternal birth complications and improving neonatal outcomes, though underlying mechanisms remain poorly understood. To facilitate mechanistic exploration, a protocol for maternal exercise of mice is established, with the regimen following the exercise guidelines for pregnant women. Compared to volunteer wheel running, treadmill running allows precise control of exercise intensity and duration, dramatically reducing variations among individual mouse within treatments and facilitating translation into maternal exercise in humans.

View Article and Find Full Text PDF

Although maternal exercise (ME) becomes increasingly uncommon, the effects of ME on offspring muscle metabolic health remain largely undefined. Maternal mice are subject to daily exercise during pregnancy, which enhances mitochondrial biogenesis during fetal muscle development; this is correlated with higher mitochondrial content and oxidative muscle fibers in offspring muscle and improved endurance capacity. Apelin, an exerkine, is elevated due to ME, and maternal apelin administration mirrors the effect of ME on mitochondrial biogenesis in fetal muscle.

View Article and Find Full Text PDF

Background: During muscle regeneration, excessive formation of adipogenic and fibrogenic tissues, from their respective fibro/adipogenic progenitors (FAPs), impairs functional recovery. Intrinsic mechanisms controlling the proliferation and differentiation of FAPs remain largely unexplored.

Methods: Here, we investigated the role of retinoic acid (RA) signalling in regulating FAPs and the subsequent effects on muscle restoration from a cardiotoxin-induced injury.

View Article and Find Full Text PDF
Article Synopsis
  • The obesity epidemic is worsening, often linked to a lack of exercise and overeating, but new research indicates that a lack of maternal exercise plays a significant role.
  • In a study with pregnant mice, those that exercised showed better development in fetal brown adipose tissue (BAT) and reduced obesity in their offspring when exposed to a high-energy diet.
  • Maternal exercise led to increased levels of a substance called apelin, which helped improve metabolic health and BAT development in the offspring, highlighting the importance of physical activity during pregnancy in combating obesity.
View Article and Find Full Text PDF

Maternal stress during pregnancy exposes fetuses to hyperglucocorticoids, which increases the risk of metabolic dysfunctions in offspring. Despite being a key tissue for maintaining metabolic health, the impacts of maternal excessive glucocorticoids (GC) on fetal brown adipose tissue (BAT) development and its long-term thermogenesis and energy expenditure remain unexamined. For testing, pregnant mice were administered dexamethasone (DEX), a synthetic GC, in the last trimester of gestation, when BAT development is the most active.

View Article and Find Full Text PDF

Key Points: Maternal exercise improves the metabolic health of maternal mice challenged with a high-fat diet. Exercise intervention of obese mothers prevents fetal overgrowth. Exercise intervention reverses impaired placental vascularization in obese mice.

View Article and Find Full Text PDF

Background: Tamoxifen-inducible Cre/lox site-specific recombination technology has been widely used to generate conditional transgenic mice. As an estrogen receptor ligand, tamoxifen itself potentially affects energy metabolism, which may confound interpretation of data especially in metabolic studies. Considering sexual dimorphism, in this study, the effects of low-dose tamoxifen administration on energy metabolism, and browning of adipose tissues in female and male mice were investigated.

View Article and Find Full Text PDF

Background: Vitamin A and its metabolite, retinoic acid (RA), are important regulators of cell differentiation and organ morphogenesis. Its impact on beef cattle muscle growth remains undefined.

Method: Angus steer calves were administrated with 0 (control) or 150,000 IU vitamin A (retinyl palmitate in glycerol, i.

View Article and Find Full Text PDF

Development of brown and beige/brite adipocytes increases thermogenesis and helps to reduce obesity and metabolic syndrome. Our previous study suggests that dietary raspberry can ameliorate metabolic syndromes in diet-induced obese mice. Here, we further evaluated the effects of raspberry on energy expenditure and adaptive thermogenesis and determined whether these effects were mediated by AMP-activated protein kinase (AMPK).

View Article and Find Full Text PDF

Clinically, low and moderate alcohol intake improves human health with protection against metabolic syndromes, including type 2 diabetes; however, mechanisms that are associated with these effects remain to be elucidated. The aims of this study were to investigate the effects of moderate alcohol intake on thermogenic brown/beige adipocyte formation and glucose and lipid homeostasis, as well as the involvement of retinoic acid (RA) signaling in the entire process. C57BL6 male mice were supplemented with 8% (w/v) alcohol in water for 1 or 4 mo.

View Article and Find Full Text PDF

Maternal vitamin A intake varies but its impact on offspring metabolic health is unknown. Here we found that maternal vitamin A or retinoic acid (RA) administration expanded PDGFRα adipose progenitor population in progeny, accompanied by increased blood vessel density and enhanced brown-like (beige) phenotype in adipose tissue, protecting offspring from obesity. Blockage of retinoic acid signaling by either BMS493 or negative RA receptor (RARαDN) over-expression abolished the increase in blood vessel density, adipose progenitor population, and beige adipogenesis stimulated by RA.

View Article and Find Full Text PDF

The objective of the present study was to investigate vascular endothelial growth factor A (VEGFA) isoform regulation of cell fate decisions of spermatogonial stem cells (SSC) in vivo. The expression pattern and cell-specific distribution of VEGF isoforms, receptors, and coreceptors during testis development postnatal d 1-180 suggest a nonvascular function for VEGF regulation of early germ cell homeostasis. Populations of undifferentiated spermatogonia present shortly after birth were positive for VEGF receptor activation as demonstrated by immunohistochemical analysis.

View Article and Find Full Text PDF

The purpose of this study was to identify factors that contribute to bovine testis development and donor age-dependent differences in the abilities of bovine ectopic testis tissue grafts to produce elongated spermatids. We used real-time RT-PCR and microarrays to evaluate and to identify the expression of genes that are involved in Sertoli and germ cell development in bovine testis tissues. Testis tissues were obtained from 2-, 4-, and 8-wk-old bull calves and were grafted immediately.

View Article and Find Full Text PDF

Bovine testis tissue xenografts contain elongating spermatids 6 mo after grafting. The percentage of seminiferous tubule cross sections with elongating spermatids at the time of graft removal varies depending on donor age and rarely exceeds 10%. These data indicate significant changes are occurring to bovine testicular cells during the first weeks of life.

View Article and Find Full Text PDF