Background And Hypothesis: Congenital anomalies of the kidney and the urinary tract (CAKUT), often discovered in utero, cover a wide spectrum of outcomes ranging from normal postnatal kidney function to fetal death. The current ultrasound workup does not allow for an accurate assessment of the outcome. The present study aimed to significantly improve the ultrasound-based prediction of postnatal kidney survival in CAKUT.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is composed of collagens, ECM glycoproteins, and proteoglycans (also named core matrisome proteins) that are critical for tissue structure and function, and matrisome-associated proteins that balance the production and degradation of the ECM proteins. The identification and quantification of core matrisome proteins using mass spectrometry is often hindered by their low abundance and their propensity to form macromolecular insoluble structures. In this study, we aimed to investigate the added value of decellularization in identifying and quantifying core matrisome proteins in mouse kidney.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) is characterized by histological changes including fibrosis and inflammation. Evidence supports that DKD is mediated by the innate immune system and more specifically by the complement system. Using Ins2Akita T1D diabetic mice, we studied the connection between the complement cascade, inflammation, and fibrosis in early DKD.
View Article and Find Full Text PDFBackground: The role of macrophages in the development of rhabdomyolysis-induced acute kidney injury (RM-AKI) has been established, but an in-depth understanding of the changes in the immune landscape could help to improve targeted strategies. Whereas senescence is usually associated with chronic kidney processes, we also wished to explore whether senescence could also occur in AKI and whether senolytics could act on immune cells.
Methods: Single-cell RNA sequencing was used in the murine glycerol-induced RM-AKI model to dissect the transcriptomic characteristics of CD45+ live cells sorted from kidneys 2 days after injury.
Vascular calcification is an important risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). It is also a complex process involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. In an observational, multicenter European study, including 112 patients with CKD from Spain and 171 patients on dialysis from France, we used serum proteome analysis and further validation by ELISA to identify calprotectin, a circulating damage-associated molecular pattern protein, as being independently associated with CV outcome and mortality.
View Article and Find Full Text PDFBackground: The absence of efficient inhibitors for diabetic kidney disease (DKD) progression reflects the gaps in our understanding of DKD molecular pathogenesis.
Methods: A comprehensive proteomic analysis was performed on the glomeruli and kidney cortex of diabetic mice with the subsequent validation of findings in human biopsies and omics datasets, aiming to better understand the underlying molecular biology of early DKD development and progression.
Results: LC-MS/MS was employed to analyze the kidney proteome of 2 DKD models: Ins2Akita (early and late DKD) and db/db mice (late DKD).
Energetic metabolism controls key steps of kidney development, homeostasis, and epithelial repair following acute kidney injury (AKI). Hepatocyte nuclear factor-1β (HNF-1β) is a master transcription factor that controls mitochondrial function in proximal tubule (PT) cells. Patients with HNF1B pathogenic variant display a wide range of kidney developmental abnormalities and progressive kidney fibrosis.
View Article and Find Full Text PDFCongenital anomalies of the kidney and the urinary tract (CAKUT) are the first cause of chronic kidney disease in childhood. Several genetic and environmental origins are associated with CAKUT, but most pathogenic pathways remain elusive. Considering the amniotic fluid (AF) composition as a proxy for fetal kidney development, we analyzed the AF proteome from non-severe CAKUT (n = 19), severe CAKUT (n = 14), and healthy control (n = 22) fetuses using LC-MS/MS.
View Article and Find Full Text PDFCongenital Anomalies of the Kidney and of the Urinary Tract (CAKUT) cover a broad range of disorders including abnormal kidney development caused by defective nephrogenesis. Here we explored the possible involvement of the low affinity p75 neurotrophin receptor (p75NTR) in CAKUT and nephrogenesis. In mouse, p75NTR was highly expressed in fetal kidney, located within cortical early nephrogenic bodies, and decreased rapidly after birth.
View Article and Find Full Text PDFWhile blocking the renin angiotensin aldosterone system (RAAS) has been the main therapeutic strategy to control diabetic kidney disease (DKD) for many years, 25-30% of diabetic patients still develop the disease. In the present work we adopted a systems biology strategy to analyze glomerular protein signatures to identify drugs with potential therapeutic properties in DKD acting through a RAAS-independent mechanism. Glomeruli were isolated from wild type and type 1 diabetic (Ins2Akita) mice treated or not with the angiotensin-converting enzyme inhibitor (ACEi) ramipril.
View Article and Find Full Text PDFAlthough a rare disease, bilateral congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of end stage kidney disease in children. Ultrasound-based prenatal prediction of postnatal kidney survival in CAKUT pregnancies is far from accurate. To improve prediction, we conducted a prospective multicenter peptidome analysis of amniotic fluid spanning 140 evaluable fetuses with CAKUT.
View Article and Find Full Text PDFAlthough cardiovascular disease (CVD) is the leading cause of morbimortality worldwide, promising new drug candidates are lacking. We compared the arterial high-resolution proteome of patients with advanced versus early-stage CVD to predict, from a library of small bioactive molecules, drug candidates able to reverse this disease signature. Of the approximately 4000 identified proteins, 100 proteins were upregulated and 52 were downregulated in advanced-stage CVD.
View Article and Find Full Text PDFBackground: The increased prevalence of cardiovascular disease (CVD) indicates a demand for novel therapeutic approaches. Proteome analysis of vascular tissues from animal models and humans with CVD could lead to the identification of novel druggable targets.
Methods: LC-MS/MS analysis of thoracic aortas from three mouse models of non-diabetic and diabetic (streptozotocin (STZ)-induced) atherosclerosis followed by bioinformatics/pathway analysis was performed.
Background: Various alterations in lipid metabolism have been observed in patients with chronic kidney disease (CKD).
Objectives: To determine the levels of lipid species in plasma from CKD and hemodialysis (HD) patients and test their association with CKD severity and patient outcome.
Methods: Seventy-seven patients with CKD stage 2 to HD were grouped into classes of CKD severity at baseline and followed-up for 3.
Background And Aims: Preclinical experiments on animal models are essential to understand the mechanisms of cardiovascular disease (CVD). Metabolomics allows access to the metabolic perturbations associated with CVD in heart and vessels. Here we assessed which potential animal CVD model most closely mimics the serum metabolite signature of increased carotid intima-media thickness (cIMT) in humans, a clinical parameter widely accepted as a surrogate of CVD.
View Article and Find Full Text PDFSeptic shock is the most common cause of acute kidney injury (AKI), but the underlying mechanisms remain unclear and no targeted therapies exist. Lysophosphatidic acid (LPA) is a bioactive lipid which in vivo administration was reported to mitigate inflammation and injuries caused by bacterial endotoxemia in the liver and lung. The objective of the present study was to determine whether LPA can protect against sepsis-associated AKI.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is a major cause of chronic kidney disease that frequently leads to end stage renal failure. Lysophosphatidic acid (LPA) and lysophosphatidylcholine (LPC) are lysophospholipid mediators shown to accumulate in kidney and to promote renal inflammation and tubulo-interstitial fibrosis in diabetic rodent models. Here we assessed whether LPA and LPC were associated to the development of nephropathy in diabetic human patients.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2017
Increased incidence of chronic kidney disease (CKD) with consecutive progression to end-stage renal disease represents a significant burden to healthcare systems. Renal tubulointerstitial fibrosis (TIF) is a classical hallmark of CKD and is well correlated with the loss of renal function. The bioactive lysophospholipid lysophosphatidic acid (LPA), acting through specific G-protein-coupled receptors, was previously shown to be involved in TIF development in a mouse model of unilateral ureteral obstruction.
View Article and Find Full Text PDFTubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype.
View Article and Find Full Text PDFInflammation is essential in defense against infection or injury. It is tightly regulated, as over-response can be detrimental, especially in immune-privileged organs such as the central nervous system (CNS). Microglia constitutes the major source of inflammatory factors, but are also involved in the regulation of the inflammation and in the reparation.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) is a pro-fibrotic mediator acting via specific receptors (LPARs) and is synthesized by autotaxin, that increases with obesity. We tested whether LPA could play a role in adipose tissue (AT)-fibrosis associated with obesity. Fibrosis [type I, III, and IV collagens (COL), fibronectin (FN), TGFβ, CTGF and αSMA] and inflammation (MCP1 and F4/80) markers were quantified: (i) in vivo in inguinal (IAT) and perigonadic (PGAT) AT from obese-diabetic db/db mice treated with the LPAR antagonist Ki16425 (5mg/kg/day ip for 7 weeks); and (ii) in vitro in human AT explants in primary culture for 72h in the presence of oleoyl-LPA (10μM) and/or Ki16425 (10μM) and/or the HIF-1α inhibitor YC-1 (100μM).
View Article and Find Full Text PDFAutotaxin (ATX) is a secreted lysophospholipase D involved in synthesis of lysophosphatidic acid (LPA), a phospholipid growth factor acting via specific receptors (LPA1R to LPA6R) and involved in several pathologies including obesity. ATX is secreted by adipocytes and contributes to circulating LPA. ATX expression is up-regulated in obese patients and mice in relationship with insulin resistance and impaired glucose tolerance.
View Article and Find Full Text PDF