We provide a new hydrodynamic framework to describe out-of-equilibrium integrable systems with space-time inhomogeneous interactions. Our result builds up on the recently introduced generalized hydrodynamics (GHD). The method allows us to analytically describe the dynamics during generic space-time-dependent smooth modulations of the interactions.
View Article and Find Full Text PDFAdiabatically varying the driving frequency of a periodically driven many-body quantum system can induce controlled transitions between resonant eigenstates of the time-averaged Hamiltonian, corresponding to adiabatic transitions in the Floquet spectrum and presenting a general tool in quantum many-body control. Using the central spin model as an application, we show how such controlled driving processes can lead to a polarization-based decoupling of the central spin from its decoherence-inducing environment at resonance. While it is generally impossible to obtain the exact Floquet Hamiltonian in driven interacting systems, we exploit the integrability of the central spin model to show how techniques from quantum quenches can be used to explicitly construct the Floquet Hamiltonian in a restricted many-body basis and model Floquet resonances.
View Article and Find Full Text PDFWe show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields.
View Article and Find Full Text PDFWe consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands.
View Article and Find Full Text PDFWe consider a 1D Bose gas with attractive interactions in a highly excited state containing no bound states. We show that in this so-called super Tonks-Girardeau gas, relaxation processes are suppressed, making the system metastable over long time scales. We compute dynamical correlation functions, revealing the structure of excitations, an enhancement of umklapp correlations and new branches due to intermediate bound states.
View Article and Find Full Text PDFUsing a numerical renormalization group based on exploiting an underlying exactly solvable nonrelativistic theory, we study the out-of-equilibrium dynamics of a 1D Bose gas (as described by the Lieb-Liniger model) released from a parabolic trap. Our method allows us to track the postquench dynamics of the gas all the way to infinite time. We also exhibit a general construction, applicable to all integrable models, of the thermodynamic ensemble that has been suggested to govern this dynamics, the generalized Gibbs ensemble.
View Article and Find Full Text PDFWe consider the effects of interactions on spinon excitations in Heisenberg spin-1/2 chains. We compute the exact two-spinon part of the longitudinal structure factor of the infinite chain in zero field for all values of anisotropy in the gapless antiferromagnetic regime, via an exact algebraic approach. Our results allow us to quantitatively describe the behavior of these fundamental excitations throughout the observable continuum, for cases ranging from free to fully coupled chains, thereby explicitly mapping the effects of "turning on the interactions" in a strongly correlated system.
View Article and Find Full Text PDFWe determine the spin-exchange dynamical structure factor of the Heisenberg spin chain, as is measured by indirect resonant inelastic x-ray scattering (RIXS). We find that two-spin RIXS excitations nearly entirely fractionalize into two-spinon states. These share the same continuum lower bound as single-spin neutron scattering excitations, even if the relevant final states belong to orthogonal symmetry sectors.
View Article and Find Full Text PDFThe zero-temperature correlation functions of the one-dimensional attractive Bose gas with a delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for a large number of particles, analogous to the Mössbauer effect.
View Article and Find Full Text PDFWe compute the momentum- and frequency-dependent longitudinal spin structure factor for the spin-1/2 XXZ Heisenberg spin chain in a magnetic field, using exact determinant representations for form factors on the lattice. Multiparticle (i.e.
View Article and Find Full Text PDF