KRAS genes belong to the most frequently mutated family of oncogenes in cancer. The G12C mutation, found in a third of lung, half of colorectal and pancreatic cancer cases, is believed to be responsible for a substantial number of cancer deaths. For 30 years, KRAS has been the subject of extensive drug-targeting efforts aimed at targeting KRAS protein itself, but also its post-translational modifications, membrane localization, protein-protein interactions and downstream signalling pathways.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
April 2016
Currently, macromolecular crystallography projects often require the use of highly automated facilities for crystallization and X-ray data collection. However, crystal harvesting and processing largely depend on manual operations. Here, a series of new methods are presented based on the use of a low X-ray-background film as a crystallization support and a photoablation laser that enable the automation of major operations required for the preparation of crystals for X-ray diffraction experiments.
View Article and Find Full Text PDFJ Med Chem
January 2015
Vps34 (the human class III phosphoinositide 3-kinase) is a lipid kinase involved in vesicle trafficking and autophagy and therefore constitutes an interesting target for cancer treatment. Because of the lack of specific Vps34 kinase inhibitors, we aimed to identify such compounds to further validate the role of this lipid kinase in cancer maintenance and progression. Herein, we report the discovery of a series of tetrahydropyrimidopyrimidinone derivatives.
View Article and Find Full Text PDFCancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells.
View Article and Find Full Text PDFVps34 is a phosphoinositide 3-kinase (PI3K) class III isoform that has attracted major attention over the recent years because of its role in autophagy. Herein we describe the biological characterization of SAR405, which is a low-molecular-mass kinase inhibitor of Vps34 (KD 1.5 nM).
View Article and Find Full Text PDFCompelling molecular biology publications have reported the implication of phosphoinositide kinase PI3Kβ in PTEN-deficient cell line growth and proliferation. These findings supported a scientific rationale for the development of PI3Kβ-specific inhibitors for the treatment of PTEN-deficient cancers. This paper describes the discovery of 2-[2-(2,3-dihydro-indol-1-yl)-2-oxo-ethyl]-6-morpholin-4-yl-3H-pyrimidin-4-one (7) and the optimization of this new series of active and selective pyrimidone indoline amide PI3Kβ inhibitors.
View Article and Find Full Text PDFJ Med Chem
May 2012
Most of the phosphoinositide-3 kinase (PI3K) kinase inhibitors currently in clinical trials for cancer treatment exhibit pan PI3K isoform profiles. Single PI3K isoforms differentially control tumorigenesis, and PI3Kβ has emerged as the isoform involved in the tumorigenicity of PTEN-deficient tumors. Herein we describe the discovery and optimization of a new series of benzimidazole- and benzoxazole-pyrimidones as small molecular mass PI3Kβ-selective inhibitors.
View Article and Find Full Text PDFCompounds that simultaneously activate the peroxisome proliferator-activated receptor (PPAR) subtypes PPARγ and PPARδ have the potential to effectively target dyslipidemia and type II diabetes in a single pharmaceutically active molecule. The frequently observed side effects of selective PPARγ agonists, such as edema and weight gain, are expected to be overcome by using partial instead of full agonists for this nuclear receptor family. Herein we report the discovery, synthesis, and optimization of a novel series of sulfonylthiadiazoles that are active as partial agonists.
View Article and Find Full Text PDFResults from a novel approach which uses protein crystallography for the screening of a low affinity inhibitor fragment library are analyzed by comparing the X-ray structures with bound fragments to the structures with the corresponding full length inhibitors. The screen for new phospho-tyrosine mimics binding to the SH2 domain of (pp60)src was initiated because of the limited cell penetration of phosphates. Fragments in our library typically had between 6 and 30 atoms and included compounds which had either millimolar activity in a Biacore assay or were suggested by the ab initio design program LUDI but had no measurable affinity.
View Article and Find Full Text PDFA total of 11 structures of the (pp60)src SH2 domain with non-peptidic inhibitors based on the same two closely related inhibitor scaffolds were determined using X-ray crystallography. Surprisingly, the inhibitors that have an IC(50) value between 4 and 2700 nM bind in three different binding modes. Structure comparisons show that the inhibitors aim to maximize the interaction between the hydrophobic substituent and the hydrophobic pY+3 pocket.
View Article and Find Full Text PDF(pp60)Src is a protein involved in signal transduction and is mainly expressed in neurones, platelets, and osteoclasts. Its precise biological role was recently discovered with the KO experiments by Soriano that gave rise to no other apparent phenotype than osteopetrosis, a disease resulting in excedent bone formation. The SH2 domain of the Src family specifically recognizes a sequence of tetrapeptide featuring a phosphotyrosine and a lipophilic aminoacid at the +1 and +3 positions.
View Article and Find Full Text PDF