Nephrotoxicity is a major side-effect of cyclosporin A (CsA), which induces a vasoconstrictive response in vascular smooth muscle and mesangial cells. Mycophenolic acid (MPA) is used in combination with low-dose CsA to reduce nephrotoxicity. We previously demonstrated that MPA affected mesangial cell contractile response to angiotensin II or KCl.
View Article and Find Full Text PDFCytoskeleton alterations are a hallmark of mesangial cell activation during glomerulosclerosis. The aim of this study was to investigate whether mycophenolic acid (MPA) affects cytoskeletal organization and motility of human mesangial cells. Using the IP15 cell line, we found that treatment with 1 micromol/L MPA inhibited both receptor-dependent (angiotensin II) and receptor-independent (KCl) contractile responses, as well as serum-induced migration activity, suggesting alterations in the intracellular mechanisms that control mesangial cell motility.
View Article and Find Full Text PDFSince the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) may play a major role in the pathophysiology of acute coronary syndromes, 299 consecutive male patients hospitalized for coronary artery disease (i.e., lumen lost > or = 50%) were genotyped for the functional -308G/A TNF-alpha polymorphism using restriction fragment length polymorphism method, in order to evaluate its potential association with the risk of unstable angina and/or myocardial infarction.
View Article and Find Full Text PDFBackground: Activation of mesangial cells is observed in several forms of chronic renal disease, and in culture conditions upon stimulation by fetal calf serum (FCS), or agonists such as transforming growth factor beta (TGF-beta). Mycophenolate mofetil (MMF), the precursor of mycophenolic acid (MPA), is currently used in organ transplantation and has been shown to be protective in clinical and experimental glomerulonephritis. This study assessed the effects of MPA on markers of human mesangial cells (HMC) activation.
View Article and Find Full Text PDF