Publications by authors named "Jean-Pierre Hubaux"

Sharing data across institutions for genome-wide association studies (GWAS) would enhance the discovery of genetic variation linked to health and disease. However, existing data-sharing regulations limit the scope of such collaborations. Although cryptographic tools for secure computation promise to enable collaborative analysis with formal privacy guarantees, existing approaches either are computationally impractical or do not implement current state-of-the-art methods.

View Article and Find Full Text PDF

Principal component analysis (PCA) is an essential algorithm for dimensionality reduction in many data science domains. We address the problem of performing a federated PCA on private data distributed among multiple data providers while ensuring data confidentiality. Our solution, SF-PCA, is an end-to-end secure system that preserves the confidentiality of both the original data and all intermediate results in a passive-adversary model with up to all-but-one colluding parties.

View Article and Find Full Text PDF

Providing provenance in scientific workflows is essential for reproducibility and auditability purposes. In this work, we propose a framework that verifies the correctness of the aggregate statistics obtained as a result of a genome-wide association study (GWAS) conducted by a researcher while protecting individuals' privacy in the researcher's dataset. In GWAS, the goal of the researcher is to identify highly associated point mutations (variants) with a given phenotype.

View Article and Find Full Text PDF

Training accurate and robust machine learning models requires a large amount of data that is usually scattered across data silos. Sharing or centralizing the data of different healthcare institutions is, however, unfeasible or prohibitively difficult due to privacy regulations. In this work, we address this problem by using a privacy-preserving federated learning-based approach, , for complex models such as convolutional neural networks.

View Article and Find Full Text PDF

The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution.

View Article and Find Full Text PDF

Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics.

View Article and Find Full Text PDF

Genotype imputation is a fundamental step in genomic data analysis, where missing variant genotypes are predicted using the existing genotypes of nearby "tag" variants. Although researchers can outsource genotype imputation, privacy concerns may prohibit genetic data sharing with an untrusted imputation service. Here, we developed secure genotype imputation using efficient homomorphic encryption (HE) techniques.

View Article and Find Full Text PDF

The growing number of health-data breaches, the use of genomic databases for law enforcement purposes and the lack of transparency of personal genomics companies are raising unprecedented privacy concerns. To enable a secure exploration of genomic datasets with controlled and transparent data access, we propose a citizen-centric approach that combines cryptographic privacy-preserving technologies, such as homomorphic encryption and secure multi-party computation, with the auditability of blockchains. Our open-source implementation supports queries on the encrypted genomic data of hundreds of thousands of individuals, with minimal overhead.

View Article and Find Full Text PDF

Multisite medical data sharing is critical in modern clinical practice and medical research. The challenge is to conduct data sharing that preserves individual privacy and data utility. The shortcomings of traditional privacy-enhancing technologies mean that institutions rely upon bespoke data sharing contracts.

View Article and Find Full Text PDF

Personalised medicine can improve both public and individual health by providing targeted preventative and therapeutic healthcare. However, patient health data must be shared between institutions and across jurisdictions for the benefits of personalised medicine to be realised. Whilst data protection, privacy, and research ethics laws protect patient confidentiality and safety they also may impede multisite research, particularly across jurisdictions.

View Article and Find Full Text PDF

MedCo is the first operational system that makes sensitive medical-data available for research in a simple, privacy-conscious and secure way. It enables a consortium of clinical sites to collectively protect their data and to securely share them with investigators, without single points of failure. In this short paper, we report on our ongoing effort for the operational deployment of MedCo within the context of the Swiss Personalized Health Network (SPHN) for the Swiss Molecular Tumor Board.

View Article and Find Full Text PDF

Medical studies are usually time consuming, cumbersome and extremely costly to perform, and for exploratory research, their results are also difficult to predict a priori. This is particularly the case for rare diseases, for which finding enough patients is difficult and usually requires an international-scale research. In this case, the process can be even more difficult due to the heterogeneity of data-protection regulations, making the data sharing process particularly hard.

View Article and Find Full Text PDF

One major obstacle to developing precision medicine to its full potential is the privacy concerns related to genomic-data sharing. Even though the academic community has proposed many solutions to protect genomic privacy, these so far have not been adopted in practice, mainly due to their impact on the data utility. We introduce GenoShare, a framework that enables individual citizens to understand and quantify the risks of revealing genome-related privacy-sensitive attributes (e.

View Article and Find Full Text PDF

The increasing number of health-data breaches is creating a complicated environment for medical-data sharing and, consequently, for medical progress. Therefore, the development of new solutions that can reassure clinical sites by enabling privacy-preserving sharing of sensitive medical data in compliance with stringent regulations (e.g.

View Article and Find Full Text PDF

Re-use of patients' health records can provide tremendous benefits for clinical research. Yet, when researchers need to access sensitive/identifying data, such as genomic data, in order to compile cohorts of well-characterized patients for specific studies, privacy and security concerns represent major obstacles that make such a procedure extremely difficult if not impossible. In this paper, we address the challenge of designing and deploying in a real operational setting an efficient privacy-preserving explorer for genetic cohorts.

View Article and Find Full Text PDF

The biomedical community is lagging in the adoption of cloud computing for the management of medical data. The primary obstacles are concerns about privacy and security. In this paper, we explore the feasibility of using advanced privacy-enhancing technologies in order to enable the sharing of sensitive clinical data in a public cloud.

View Article and Find Full Text PDF

Purpose: Protecting patient privacy is a major obstacle for the implementation of genomic-based medicine. Emerging privacy-enhancing technologies can become key enablers for managing sensitive genetic data. We studied physicians' attitude toward this kind of technology in order to derive insights that might foster their future adoption for clinical care.

View Article and Find Full Text PDF

Background: Cloud computing is becoming the preferred solution for efficiently dealing with the increasing amount of genomic data. Yet, outsourcing storage and processing sensitive information, such as genomic data, comes with important concerns related to privacy and security. This calls for new sophisticated techniques that ensure data protection from untrusted cloud providers and that still enable researchers to obtain useful information.

View Article and Find Full Text PDF

Motivation: Due to the limited power of small-scale genome-wide association studies (GWAS), researchers tend to collaborate and establish a larger consortium in order to perform large-scale GWAS. Genome-wide association meta-analysis (GWAMA) is a statistical tool that aims to synthesize results from multiple independent studies to increase the statistical power and reduce false-positive findings of GWAS. However, it has been demonstrated that the aggregate data of individual studies are subject to inference attacks, hence privacy concerns arise when researchers share study data in GWAMA.

View Article and Find Full Text PDF

The Global Alliance for Genomics and Health (GA4GH) created the Beacon Project as a means of testing the willingness of data holders to share genetic data in the simplest technical context-a query for the presence of a specified nucleotide at a given position within a chromosome. Each participating site (or "beacon") is responsible for assuring that genomic data are exposed through the Beacon service only with the permission of the individual to whom the data pertains and in accordance with the GA4GH policy and standards.While recognizing the inference risks associated with large-scale data aggregation, and the fact that some beacons contain sensitive phenotypic associations that increase privacy risk, the GA4GH adjudged the risk of re-identification based on the binary yes/no allele-presence query responses as acceptable.

View Article and Find Full Text PDF

In clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to store patients' complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compression, encryption, and selective retrieval.

View Article and Find Full Text PDF

Purpose: The implementation of genomic-based medicine is hindered by unresolved questions regarding data privacy and delivery of interpreted results to health-care practitioners. We used DNA-based prediction of HIV-related outcomes as a model to explore critical issues in clinical genomics.

Methods: We genotyped 4,149 markers in HIV-positive individuals.

View Article and Find Full Text PDF

Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) an association with traits and certain diseases, identification capability (e.

View Article and Find Full Text PDF

The storage of greater numbers of exomes or genomes raises the question of loss of privacy for the individual and for families if genomic data are not properly protected. Access to genome data may result from a personal decision to disclose, or from gaps in protection. In either case, revealing genome data has consequences beyond the individual, as it compromises the privacy of family members.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session68mm6ct9qk50opkpj0umjejjl2tk8o4b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once