Germanium selenide glasses of compositions spanning the whole glass-formation range are aged at room temperature for up to 20 years. A prominent enthalpy relaxation process is observed in all glasses, and its structural origin is analyzed by Raman spectroscopy. The structural relaxation is manifested in the Raman spectra as a decrease in the ratio of edge- to corner-sharing GeSe tetrahedral units.
View Article and Find Full Text PDFAtomic force microscopy (AFM) was used to characterize the surface damage (nanoindentations) effect on the chemical durability of glass surfaces (silica and soda-lime silicate glasses, WG). In basic solutions, an enhanced dissolution rate is reported and quantified at indentation sites (+10.5 nm/h and +52 nm/h for silica and WG, respectively) whereas none was observed once the indented surfaces were thermally annealed at 0.
View Article and Find Full Text PDFAtomic force microscopy is used to investigate the possibility of cavity formation during crack growth in silicate glasses. Matching areas on both fracture surfaces were mapped and then compared. For silica glass, and soda-lime-silicate glass, the fracture surfaces matched to a resolution of better than 0.
View Article and Find Full Text PDF