Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds.
View Article and Find Full Text PDFCancer Drug Resist
August 2024
The gene encodes several isoforms, including two transporters (i.e., ABCB5FL, ABCB5β) and several soluble proteins, such as ABCB5α which has been hypothesized to have a regulatory function.
View Article and Find Full Text PDFABCB5 is a member of the ABC transporter superfamily composed of 48 transporters, which have been extensively studied for their role in cancer multidrug resistance and, more recently, in tumorigenesis. ABCB5 has been identified as a marker of skin progenitor cells, melanoma, and limbal stem cells. It has also been associated with multidrug resistance in several cancers.
View Article and Find Full Text PDFABCB5β is a member of the ABC transporter superfamily cloned from melanocytes. It has been reported as a marker of skin progenitor cells and melanoma stem cells. ABCB5β has also been shown to exert an oncogenic activity and promote cancer metastasis.
View Article and Find Full Text PDFHuman ATP-binding cassette (ABC) transporters are ubiquitously expressed and transport a broad range of endogenous and xenobiotic substrates across extra- and intracellular membranes. Mutations in ABC genes cause 21 monogenic diseases, and polymorphisms in these genes are associated with susceptibility to complex diseases. ABC transporters also play a major role in drug bioavailability, and they mediate multidrug resistance in cancer.
View Article and Find Full Text PDFA medicinal chemistry approach combining and methodologies was performed aiming at identifying and characterizing putative allosteric drug-binding sites (aDBSs) at the interface of the transmembrane- and nucleotide-binding domains (TMD-NBD) of P-glycoprotein. Two aDBSs were identified, one in TMD1/NBD1 and another one in TMD2/NBD2, by means of fragment-based molecular dynamics and characterized in terms of size, polarity, and lining residues. From a small library of thioxanthone and flavanone derivatives, experimentally described to bind at the TMD-NBD interfaces, several compounds were identified to be able to decrease the verapamil-stimulated ATPase activity.
View Article and Find Full Text PDFIn this study, the impact of four P-gp mutations (G185V, G830V, F978A and ΔF335) on drug-binding and efflux-related signal-transmission mechanism was comprehensively evaluated in the presence of ligands within the drug-binding pocket (DBP), experimentally related with changes in their drug efflux profiles. The severe repacking of the transmembrane helices (TMH), induced by mutations and exacerbated by the presence of ligands, indicates that P-gp is sensitive to perturbations in the transmembrane region. Alterations on drug-binding were also observed as a consequence of the TMH repacking, but were not always correlated with alterations on ligands binding mode and/or binding affinity.
View Article and Find Full Text PDFABCB5 encodes a full transporter (ABCB5FL) and a half transporter (ABCB5β), which is unique in the ATP binding cassette (ABC) transporter superfamily. We discuss the roles of both isoforms in undifferentiated slow-cycling cells, multidrug resistance, and tumorigenesis, and their regulation pathways.
View Article and Find Full Text PDFCancer develops resistance to treatments through many mechanisms. Single-cell analyses reveal the intratumor heterogeneity and dynamic relationships between cancer cell subpopulations. These analyses also highlight that various mechanisms of resistance may coexist in a given tumor.
View Article and Find Full Text PDFP-glycoprotein (P-gp, ABCB1) overexpression is, currently, one of the most important multidrug resistance (MDR) mechanisms in tumor cells. Thus, modulating drug efflux by P-gp has become one of the most promising approaches to overcome MDR in cancer. Yet, more insights on the molecular basis of drug specificity and efflux-related signal transmission mechanism between the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) are needed to develop molecules with higher selectivity and efficacy.
View Article and Find Full Text PDFABCB5 is an ABC transporter that was shown to confer low-level multidrug resistance in cancer. In this study, we show that ABCB5 was mutated in 13.75% of the 640 melanoma samples analyzed.
View Article and Find Full Text PDFDespite improvements in the management of liver cancer, the survival rate for patients with hepatocellular carcinoma (HCC) remains dismal. The survival benefit of systemic chemotherapy for the treatment of liver cancer is only marginal. Although the reasons for treatment failure are multifactorial, intrinsic resistance to chemotherapy plays a primary role.
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
September 2016
Resistance to anticancer drugs is a complex process that results from alterations in drug targets; development of alternative pathways for growth activation; changes in cellular pharmacology, including increased drug efflux; regulatory changes that alter differentiation pathways or pathways for response to environmental adversity; and/or changes in the local physiology of the cancer, such as blood supply, tissue hydrodynamics, behavior of neighboring cells, and immune system response. All of these specific mechanisms are facilitated by the intrinsic hallmarks of cancer, such as tumor cell heterogeneity, redundancy of growth-promoting pathways, increased mutation rate and/or epigenetic alterations, and the dynamic variation of tumor behavior in time and space. Understanding the relative contribution of each of these factors is further complicated by the lack of adequate in vitro models that mimic clinical cancers.
View Article and Find Full Text PDFMultidrug resistance (MDR) has been associated with expression of ABC transporter genes including P-glycoprotein (Pgp, MDR1, ABCB1). However, deregulation of apoptotic pathways also renders cells resistant to chemotherapy. To discover apoptosis-related genes affected by Pgp expression, we used the HeLa MDR-off system.
View Article and Find Full Text PDFBackground: We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity.
View Article and Find Full Text PDFABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target.
View Article and Find Full Text PDFThe System for Continuous Observation of Rodents in Home-cage Environment (SCORHE) was developed to demonstrate the viability of compact and scalable designs for quantifying activity levels and behavior patterns for mice housed within a commercial ventilated cage rack. The SCORHE in-rack design provides day- and night-time monitoring with the consistency and convenience of the home-cage environment. The dual-video camera custom hardware design makes efficient use of space, does not require home-cage modification, and is animal-facility user-friendly.
View Article and Find Full Text PDFPolarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter.
View Article and Find Full Text PDFBackground: KB-8-5-11 cells are a drug-resistant cervical cell model that overexpresses ABCB1 (P-glycoprotein). KB-8-5-11 has become sensitive to non-ABCB1 substrate cisplatin. Understanding the mechanism of collateral sensitivity to cisplatin may lead to biomarker discovery for platinum sensitivity in patients with cancer.
View Article and Find Full Text PDFBackground: Studies of mechanisms mediating resistance to chemotherapy led to the discovery of the multidrug transporter ABCB1 (ATP-binding cassette, subfamily B, member 1), often expressed in leukemic cells of patients with acute myeloid leukemia (AML). Most clinical trials evaluating the strategy of inhibiting efflux-mediated chemotherapeutic resistance have been unsuccessful, clearly indicating the need for a better approach.
Methods: This study investigated the clinical relevance of 380 genes whose expression has been shown to affect the response to chemotherapy, mostly through in vitro studies, in 11 paired samples obtained at AML diagnosis and at relapse.
To identify molecular determinants of histone deacetylase inhibitor (HDI) resistance, we selected HuT78 cutaneous T-cell lymphoma (CTCL) cells with romidepsin in the presence of P-glycoprotein inhibitors to prevent transporter upregulation. Resistant sublines were 250- to 385-fold resistant to romidepsin and were resistant to apoptosis induced by apicidin, entinostat, panobinostat, belinostat, and vorinostat. A custom TaqMan array identified increased insulin receptor (INSR) gene expression; immunoblot analysis confirmed increased protein expression and a four- to eightfold increase in mitogen-activated protein kinase (MAPK) kinase (MEK) phosphorylation in resistant cells compared with parental cells.
View Article and Find Full Text PDFAlthough advances in genomics during the last decade have opened new avenues for translational research and allowed the direct evaluation of clinical samples, there is still a need for reliable preclinical models to test therapeutic strategies. Human cancer-derived cell lines are the most widely used models to study the biology of cancer and to test hypotheses to improve the efficacy of cancer treatment. Since the development of the first cancer cell line, the clinical relevance of these models has been continuously questioned.
View Article and Find Full Text PDFThe expression and function of several multidrug transporters (including ABCB1 and ABCG2) have been studied in human cancer cells and in mouse and human adult stem cells. However, the expression of ABCG2 in human embryonic stem cells (hESCs) remains unclear. Limited and contradictory results in the literature from two research groups have raised questions regarding its expression and function.
View Article and Find Full Text PDFOur aim was to explore the involvement of the transcriptional suppressor GCF2 in silencing RhoA, disorganization of the cytoskeleton, mislocalization of MRP1, and sensitivity to anticancer agents as an upstream gene target in cancer therapy. Increased expression of GCF2 was found in human cisplatin-resistant cells, and overexpression in GCF2-transfected cells results in loss of RhoA expression and disruption of the actin/filamin network. In consequence, the membrane transporter MRP1 was internalized from the cell surface into the cytoplasm, rendering cells sensitive to doxorubicin by more than 10-fold due to increased accumulation of doxorubicin in the cells.
View Article and Find Full Text PDF