The utilization of methane for chemical production, often considered as the future of petrochemistry, historically could not compete economically with conventional processes due to higher investment costs. Achieving sustainability and decarbonization of the downstream industry by integration with a methane-to-chemicals process may provide an opportunity to unlock the future for these technologies. Gas-to-chemicals is an efficient tool to boost the decarbonization potential of renewable energy.
View Article and Find Full Text PDFLight olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions.
View Article and Find Full Text PDFThe preparation of defect-free MFI crystals containing single-site framework Mo through a hydrothermal postsynthesis treatment is reported. The insertion of single Mo sites in the MFI zeolite samples with different crystal sizes of 100, 200, and 2000 nm presenting a diverse concentration of silanol groups is revealed. The nature of the silanols and their role in the incorporation of Mo into the zeolite structure are elucidated through an extensive spectroscopic characterization (Si NMR, H NMR, P NMR, and IR) combined with X-ray diffraction and HRTEM.
View Article and Find Full Text PDFZeolites have been game-changing materials in oil refining and petrochemistry over the last 60 years and have the potential to play the same role in the emerging processes of the energy and environmental transition. Although zeolites are crystalline inorganic solids, their structures are not perfect and the presence of defect sites - mainly Brønsted acid sites and silanols - influences their thermal and chemical resistance as well as their performances in key areas such as catalysis, gas and liquid separations and ion-exchange. In this paper, we review the type of defects in zeolites and the characterization techniques used for their identification and quantification with the focus on diffraction, spectroscopic and modeling approaches.
View Article and Find Full Text PDFThe current energy transition presents many technological challenges, such as the development of highly stable catalysts. Herein, we report a novel "top-down" synthesis approach for preparation of a single-site Mo-containing nanosized ZSM-5 zeolite which has atomically dispersed framework-molybdenum homogenously distributed through the zeolite crystals. The introduction of Mo heals most of the native point defects in the zeolite structure resulting in an extremely stable material.
View Article and Find Full Text PDFA methodology for determining the micropore, mesopore, and external surface areas of hierarchical microporous/mesoporous materials from N adsorption isotherms at 77 K is described. For FAU-Y zeolites, the microporous surface area calculated using the Rouquerol criterion and the Brunauer-Emmett-Teller (BET) equation is in accord with the geometrical surface determined by the chord length distribution method. Therefore, BET surface area ( S) is the well representative of micropore surface areas of microporous materials and of total surface area of microporous/mesoporous materials.
View Article and Find Full Text PDFThe texture of mesoporous FAU-Y (FAUmes) prepared by surfactant-templating in basic media is a subject of debate. It is proposed that mesoporous FAU-Y consists of: (1) ordered mesoporous zeolite networks formed by a surfactant-assisted zeolite rearrangement process involving local dissolution and reconstruction of the crystalline framework, and (2) ordered mesoporous amorphous phases as Al-MCM-41, which coexist with zeolite nanodomains obtained by a dissolution-reassembly process. By the present systematic study, performed with FAU-Y (Si/Al = 15) in the presence of octadecyltrimethylammonium bromide and 0 < NaOH/Si ratio < 0.
View Article and Find Full Text PDF