Publications by authors named "Jean-Philippe Poizat"

Hybrid quantum optomechanical systems interface a macroscopic mechanical degree of freedom with a single two-level system such as a single spin, a superconducting qubit or a single optical emitter. Recently, hybrid systems operating in the microwave domain have witnessed impressive progress. Concurrently, only a few experimental approaches have successfully addressed hybrid systems in the optical domain, demonstrating that macroscopic motion can modulate the two-level system transition energy.

View Article and Find Full Text PDF

We investigate theoretically the generation of indistinguishable single photons from a strongly dissipative quantum system placed inside an optical cavity. The degree of indistinguishability of photons emitted by the cavity is calculated as a function of the emitter-cavity coupling strength and the cavity linewidth. For a quantum emitter subject to strong pure dephasing, our calculations reveal that an unconventional regime of high indistinguishability can be reached for moderate emitter-cavity coupling strengths and high-quality factor cavities.

View Article and Find Full Text PDF

We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire.

View Article and Find Full Text PDF

When a single emitter is excited by two phase-coherent pulses with a time delay, each of the pulses can lead to the emission of a photon pair, thus creating a "time-bin-entangled" state. Double pair emission can be avoided by initially preparing the emitter in a metastable state. We show how photons from separate emissions can be made indistinguishable, permitting their use for multiphoton interference.

View Article and Find Full Text PDF

We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session23s41aokdbkc0p8pnrj4mkio17up1sfs): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once