A huge amount of thermal energy is available close to material surfaces in radiative and nonradiative states, which can be useful for matter characterization or energy harvesting. Even though a full class of novel nanoengineered devices has been predicted over the last two decades for exploiting near-field thermal photons, efficient near-field thermophotovoltaic conversion could not be achieved experimentally until now. Here, we realize a proof of principle by using a micrometer-sized indium antimonide photovoltaic cell cooled at 77 K and approached at nanometer distances from a hot (∼730 K) graphite microsphere emitter.
View Article and Find Full Text PDFSimulations of near-field thermophotovoltaic devices predict promising performance, but experimental observations remain challenging. Having the lowest bandgap among III-V semiconductors, indium antimonide (InSb) is an attractive choice for the photovoltaic cell, provided it is cooled to a low temperature, typically around 77 K. Here, by taking into account fabrication and operating constraints, radiation transfer and low-injection charge transport simulations are made to find the optimum architecture for the photovoltaic cell.
View Article and Find Full Text PDF