Proc Natl Acad Sci U S A
October 2017
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient.
View Article and Find Full Text PDFCapillary forces are involved in a variety of natural phenomena, ranging from droplet breakup to the physics of clouds. The forces from surface tension can also be exploited in industrial applications provided the length scales involved are small enough. Recent experimental investigations showed how to take advantage of capillarity to fold planar structures into three-dimensional configurations by selectively melting polymeric hinges joining otherwise rigid shapes.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2013
We discuss a new class of approaches for simulating multiscale kinetic problems, with particular emphasis on applications related to small-scale transport. These approaches are based on a decomposition of the kinetic description into an equilibrium part, which is described deterministically (analytically or numerically), and the remainder, which is described using a particle simulation method. We show that it is possible to derive evolution equations for the two parts from the governing kinetic equation, leading to a decomposition that is dynamically and automatically adaptive, and a multiscale method that seamlessly bridges the two descriptions without introducing any approximation.
View Article and Find Full Text PDF