This work investigates the mixed site occupancy of aluminium and silicon atoms in the β-AlFeSi phase. For this purpose, the six mixed Al/Si sites of the β-AlFeSi structure were considered independent and alternatively substituted by Al or Si, thus generating 64 ordered structures or . The enthalpy of formation of each was calculated by DFT.
View Article and Find Full Text PDFClassical molecular dynamics simulations of metallic systems have been extensively applied in recent years for the exploration of the energetic behavior of mesoscale structures and for the generation of thermodynamic and physical properties. The evaluation of the conditions leading to the melting of pure metals and alloys is particularly challenging as it involves at one point the simultaneous presence of both a solid and a liquid phase. Defects such as vacancies, dislocation, grain boundaries and pores typically promote the melting of a solid by locally increasing its free energy which favors the destruction of long-range ordering at the origin of this phase transition.
View Article and Find Full Text PDFAbstract: Metals and alloys are among the most technologically important materials for our industrialized societies. They are the most common structural materials used in cars, airplanes and buildings, and constitute the technological core of most electronic devices. They allow the transportation of energy over great distances and are exploited in critical parts of renewable energy technologies.
View Article and Find Full Text PDFMulti-component and multiphasic materials are continually being developed for electronics, aircraft, automotive, and general applications. Integrated Computational Materials Engineering (ICME) is a multiple-length scale approach that greatly benefits from atomistic scale simulations to explore new alloys. Molecular Dynamics (MD) allows to perform large-scale simulations by using classical interatomic potentials.
View Article and Find Full Text PDFAs the field of ionic liquids matures to more industrially implemented applications, robust models of their physico-chemical properties become necessary for process optimization. Viscosity is a particularly difficult property to model since there is no generally accepted theory for the viscosity of liquids. This paper aims to review the viscosity models developed or adapted to ionic liquids and their mixtures that are available in the literature.
View Article and Find Full Text PDFThermodynamic models of solid solutions used in computational thermochemistry have not been modernized in recent years. With the advent of fast and cheap computers, it is nowadays possible to add, at a minimal computational cost, physical ingredients such as coordination numbers, inter-atomic distances and classical interatomic potentials to the function describing the energetics of ordered and disordered solid solutions. As we show here, the integration of these elements into a robust statistical thermodynamic model of solution establishes natural connections with other deterministic and stochastic atomistic methods such as Monte Carlo and molecular dynamics simulations.
View Article and Find Full Text PDF