Publications by authors named "Jean-Philippe Gorce"

Low-cost particulate matter (PM) sensors provide new methods for monitoring occupational exposure to hazardous substances, such as flour dust. These devices have many possible benefits, but much remains unknown about their performance for different exposure monitoring strategies in the workplace. We explored the performance of PM sensors for four different monitoring strategies (time-weighted average and high time resolution, each quantitative and semi-quantitative) for assessing occupational exposure using low-cost PM sensors in a field study in the industrial bakery sector.

View Article and Find Full Text PDF

The dermal Advanced REACH Tool (dART) is a tier 2 exposure model for estimating dermal exposure to the hands (mg min-1) for non-volatile liquid and solid-in-liquid products. The dART builds upon the existing ART framework and describes three mass transport processes (deposition (Dhands), direct emission and direct contact (Ehands), and contact transfer (Thands)) that may each contribute to dermal exposure. The mechanistic model that underpins the dART and calibration of the mechanistic model, such that the dimensionless score that results from encoding contextual information about a task into the determinants of the dART can be converted into a prediction of exposure (mg min-1), have been described in previous work.

View Article and Find Full Text PDF

(1) Background: Small, lightweight, low-cost optical particulate matter (PM) monitors are becoming popular in the field of occupational exposure monitoring, because these devices allow for real-time static measurements to be collected at multiple locations throughout a work site as well as being used as wearables providing personal exposure estimates. Prior to deployment, devices should be evaluated to optimize and quantify measurement accuracy. However, this can turn out to be difficult, as no standardized methods are yet available and different deployments may require different evaluation procedures.

View Article and Find Full Text PDF

The dermal Advanced REACH Tool (dART) is a Tier 2 exposure modelling tool currently in development for estimating dermal exposure to the hands (mg min-1) for non-volatile liquid and solids-in-liquid products. The dART builds upon the existing ART framework and describes three mass transport processes [deposition (Dhands), direct emission and direct contact (Ehands), and contact transfer (Thands)] that may each contribute to dermal exposure. The mechanistic model that underpins the dART and its applicability domain has already been described in previous work.

View Article and Find Full Text PDF

This article describes the development of a mechanistic model for underpinning the dermal Advanced REACH Tool (dART), an extension of the existing ART model and its software platform. It was developed for hand exposure to low volatile liquids (vapour pressure ≤ 10 Pa at 20°C) including solids-in-liquid products. The model is based on an existing conceptual dermal source-receptor model that has been integrated into the ART framework.

View Article and Find Full Text PDF

The use of a portable X-ray fluorescence spectrometer (PXRF) equipped with a miniaturised X-ray tube producing a small 8 mm diameter X-ray beam required the validation of two new sampling protocols for the immediate screening of occupational lead exposure. First, lead in dust and fumes, collected by Institute of Occupational Medicine (IOM) inhalable samplers on 25 mm diameter membrane filters, is quantified using PXRF. To account for irregular dust deposition, the filters are rotated manually by quarter turns.

View Article and Find Full Text PDF

The purpose of this project was to develop and validate a hand wiping protocol to be used by occupational hygienists, scientists, or other competent persons, measuring skin exposure to lead in workplaces. Inadvertent lead ingestion is likely to occur once the hands of employees have become contaminated. Ideally, a hand wiping protocol should maximize the recovery of lead-based residues present on employees' hands in a cost-effective and reproducible manner.

View Article and Find Full Text PDF

This paper describes a new in vivo Raman probe that allows investigation of areas of the body that are otherwise difficult to access. It is coupled to a previously described commercially available in vivo Raman spectrometer that samples the skin through an optical flat. In the work presented here, the laser light emerges from a smaller pen-shaped probe.

View Article and Find Full Text PDF