Laser-plasma accelerators (LPAs) produce electric fields of the order of 100 GV m, more than 1000 times larger than those produced by radio-frequency accelerators. These uniquely strong fields make LPAs a promising path to generate electron beams beyond the TeV, an important goal in high-energy physics. Yet, large electric fields are of little benefit if they are not maintained over a long distance.
View Article and Find Full Text PDFThe investigation of spatio-temporal couplings (STCs) of broadband light beams is becoming a key topic for the optimization as well as applications of ultrashort laser systems. This calls for accurate measurements of STCs. Yet, it is only recently that such complete spatio-temporal or spatio-spectral characterization has become possible, and it has so far mostly been implemented at the output of the laser systems, where experiments take place.
View Article and Find Full Text PDFWe report a straightforward beam splitter in the soft x-ray spectral range using a thin oxidized aluminum foil. As it allows us to monitor reliably shot-to-shot variations in energy and in energy distribution, this beam splitter is of high interest for the simultaneous use of diagnostics for soft x-rays sources. We measure a transmission of 0.
View Article and Find Full Text PDFDiffraction puts a fundamental limit on the distance over which a light beam can remain focused. For about 30 years, several techniques to overcome this limit have been demonstrated. Here, we propose a reflective optics, namely, the axiparabola, that allows to extend the production of "diffraction-free" beams to high-peak-power and broadband laser pulses.
View Article and Find Full Text PDFTechnology based on high-peak-power lasers has the potential to provide compact and intense radiation sources for a wide range of innovative applications. In particular, electrons that are accelerated in the wakefield of an intense laser pulse oscillate around the propagation axis and emit X-rays. This betatron source, which essentially reproduces the principle of a synchrotron at the millimeter scale, provides bright radiation with femtosecond duration and high spatial coherence.
View Article and Find Full Text PDF