It has been shown that dynamic recurrent neural networks are successful in identifying the complex mapping relationship between full-wave-rectified electromyographic (EMG) signals and limb trajectories during complex movements. These connectionist models include two types of adaptive parameters: the interconnection weights between the units and the time constants associated to each neuron-like unit; they are governed by continuous-time equations. Due to their internal structure, these models are particularly appropriate to solve dynamical tasks (with time-varying input and output signals).
View Article and Find Full Text PDF