Publications by authors named "Jean-Philippe Attane"

Spin-orbit torques (SOTs) have opened a novel way to manipulate the magnetization using in-plane current, with a great potential for the development of fast and low power information technologies. It has been recently shown that two-dimensional electron gases (2DEGs) appearing at oxide interfaces provide a highly efficient spin-to-charge current interconversion. The ability to manipulate 2DEGs using gate voltages could offer a degree of freedom lacking in the classical ferromagnetic/spin Hall effect bilayers for spin-orbitronics, in which the sign and amplitude of SOTs at a given current are fixed by the stack structure.

View Article and Find Full Text PDF

Spin-orbit effects appearing in topological insulators (TI) and at Rashba interfaces are currently revolutionizing how we can manipulate spins and have led to several newly discovered effects, from spin-charge interconversion and spin-orbit torques to novel magnetoresistance phenomena. In particular, a puzzling magnetoresistance has been evidenced as bilinear in electric and magnetic fields. Here, we report the observation of bilinear magnetoresistance (BMR) in strained HgTe, a prototypical TI.

View Article and Find Full Text PDF

Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g.

View Article and Find Full Text PDF

Spin-transfer torque (STT) and spin-orbit torque (SOT) are spintronic phenomena allowing magnetization manipulation using electrical currents. Beyond their fundamental interest, they allow developing new classes of magnetic memories and logic devices, in particular based on domain wall (DW) motion. In this work, we report the study of STT-driven DW motion in ferrimagnetic manganese nickel nitride (MnNiN) films, in which magnetization and angular momentum compensation can be obtained by the fine adjustment of the Ni content.

View Article and Find Full Text PDF

Large spin Hall angles have been observed in 3d ferromagnets, but their origin, and especially their link with the ferromagnetic order, remain unclear. Here, we investigate the evolution of the inverse spin Hall effect of Ni_{60}Cu_{40} and Ni_{50}Cu_{50} across their Curie temperatures using spin-pumping experiments. We show that the inverse spin Hall effect in these samples is comparable to that of platinum, and that it is insensitive to the magnetic order.

View Article and Find Full Text PDF

After 50 years of development, the technology of today's electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems needs to be contained. These two factors require the introduction of non-traditional materials and state variables.

View Article and Find Full Text PDF

Spintronics entails the generation, transport, manipulation and detection of spin currents, usually in hybrid architectures comprising interfaces whose impact on performance is detrimental. In addition, how spins are generated and detected is generally material specific and determined by the electronic structure. Here, we demonstrate spin current generation, transport and electrical detection, all within a single non-magnetic material system: a SrTiO two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling.

View Article and Find Full Text PDF

Spintronics, which is the basis of a low-power, beyond-CMOS technology for computational and memory devices, remains up to now entirely based on critical materials such as Co, heavy metals and rare-earths. Here, we show that MnN, a rare-earth free ferrimagnet made of abundant elements, is an exciting candidate for the development of sustainable spintronics devices. MnN thin films grown epitaxially on SrTiO substrates possess remarkable properties, such as a perpendicular magnetization, a very high extraordinary Hall angle (2%) and smooth domain walls at the millimeter scale.

View Article and Find Full Text PDF

While spintronics has traditionally relied on ferromagnetic metals as spin generators and detectors, spin-orbitronics exploits the efficient spin-charge interconversion enabled by spin-orbit coupling in non-magnetic systems. Although the Rashba picture of split parabolic bands is often used to interpret such experiments, it fails to explain the largest conversion effects and their relationship with the electronic structure. Here, we demonstrate a very large spin-to-charge conversion effect in an interface-engineered, high-carrier-density SrTiO two-dimensional electron gas and map its gate dependence on the band structure.

View Article and Find Full Text PDF

Spin-orbitronics is based on the ability of spin-orbit interactions to achieve the conversion between charge currents and pure spin currents. As the precise evaluation of the conversion efficiency becomes a crucial issue, the need for straightforward ways to observe this conversion has emerged as one of the main challenges in spintronics. Here, we propose a simple device, akin to the ferromagnetic/nonmagnetic bilayers used in most spin-orbit torques experiments, and consisting of a spin Hall effect wire connected to two transverse ferromagnetic electrodes.

View Article and Find Full Text PDF