AbstractPrevious theory has shown that assortative mating for plastic traits can maintain genetic divergence across environmental gradients despite high gene flow. Yet these models did not examine how assortative mating affects the evolution of plasticity. We here describe patterns of genetic variation across elevation for plasticity in a trait under assortative mating, using multiple-year observations of budburst date in a common garden of sessile oaks.
View Article and Find Full Text PDFMetapop is a stochastic individual-based simulation program. It uses quantitative genetics theory to produce an explicit description of the typical life cycle of monoecious and hermaphroditic plant species. Genome structure, the relationship between genotype and phenotype, and the effects of landscape heterogeneity on each individual can be finely parameterized by the user.
View Article and Find Full Text PDFBackground: On-going climate change is shifting the timing of bud burst (TBB) of broad leaf and conifer trees in temperate areas, raising concerns about the abilities of natural populations to respond to these shifts. The level of expected evolutionary change depends on the level and distribution of genetic variation of TBB. While numerous experimental studies have highlighted the role of divergent selection in promoting clinal TBB differentiation, we explored whether the observed patterns of variation could be generated by the joint effects of assortative mating for TBB and gene flow among natural populations.
View Article and Find Full Text PDF