We study the model of growing filament against a wall proposed by Peskin, Odell, and Oster [Biophys. J. 65, 316 (1993)BIOJAU0006-349510.
View Article and Find Full Text PDFThe dynamic behavior of bundles of actin filaments growing against a loaded obstacle is investigated through a generalized version of the standard multifilament Brownian Ratchet model in which the (de)polymerizing filaments are treated not as rigid rods but as semiflexible discrete wormlike chains with a realistic value of the persistence length. By stochastic dynamic simulations, we study the relaxation of a bundle of N filaments with a staggered seed arrangement against a harmonic trap load in supercritical conditions. Thanks to the time scale separation between the wall motion and the filament size relaxation, mimicking realistic conditions, this setup allows us to extract a full load-velocity curve from a single experiment over the trap force/size range explored.
View Article and Find Full Text PDFControlling polymer/substrate interfaces without modifying chemistry is nowadays possible by finely tuning the formation of adsorbed layers. The complex processes leading to irreversible attachment of chains onto solid substrates are governed by two mechanisms: molecular rearrangement and potential-driven adsorption. Here we introduce an analytical method to differentiate these two mechanisms.
View Article and Find Full Text PDFWe report a coarse-grained molecular dynamics simulation study of a bundle of parallel actin filaments under supercritical conditions pressing against a loaded mobile wall using a particle-based approach where each particle represents an actin unit. The filaments are grafted to a fixed wall at one end and are reactive at the other end, where they can perform single monomer (de)polymerization steps and push on a mobile obstacle. We simulate a reactive grand canonical ensemble in a box of fixed transverse area , with a fixed number of grafted filaments N f , at temperature and monomer chemical potential μ 1 .
View Article and Find Full Text PDFWe establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force.
View Article and Find Full Text PDFWe consider a single living semi-flexible filament with persistence length ℓp in chemical equilibrium with a solution of free monomers at fixed monomer chemical potential μ1 and fixed temperature T. While one end of the filament is chemically active with single monomer (de)polymerization steps, the other end is grafted normally to a rigid wall to mimic a rigid network from which the filament under consideration emerges. A second rigid wall, parallel to the grafting wall, is fixed at distance L < < ℓp from the filament seed.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2014
In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer.
View Article and Find Full Text PDFTo study the compressional forces exerted by a bundle of living stiff filaments pressing on a surface, akin to the case of an actin bundle in filopodia structures, we have performed particulate molecular dynamics simulations of a grafted bundle of parallel living (self-assembling) filaments, in chemical equilibrium with a solution of their constitutive monomers. Equilibrium is established as these filaments, grafted at one end to a wall of the simulation box, grow at their chemically active free end, and encounter the opposite confining wall of the simulation box. Further growth of filaments requires bending and thus energy, which automatically limit the populations of longer filaments.
View Article and Find Full Text PDFWe propose a hybrid molecular dynamics/multi-particle collision dynamics model to simulate a set of self-assembled semiflexible filaments and free monomers. Further, we introduce a Monte Carlo scheme to deal with single monomer addition (polymerization) or removal (depolymerization), satisfying the detailed balance condition within a proper statistical mechanical framework. This model of filaments, based on the wormlike chain, aims to represent equilibrium polymers with distinct reaction rates at both ends, such as self-assembled adenosine diphosphate-actin filaments in the absence of adenosine triphosphate (ATP) hydrolysis and other proteins.
View Article and Find Full Text PDF