Objective: To compare a novel cardiovascular magnetic resonance technique for the assessment of left ventricular (LV) mechanical discoordination by characterizing the endocardial center motion (ECM) in short-axis cine MRI in healthy volunteers and heart failure patients with left bundle branch block (HF-LBBB).
Approach: To evaluate ECM analysis as mechanical discoordination measure, we retrospectively compared spatial and temporal features of the ECM between a group of healthy volunteers (n = 14) and conduction defect patients (HF-LBBB, n = 31). We tracked the center of the endocardial borders on short-axis view MRI cine loops during the cardiac cycle.
Purpose: To compare cine and tagged magnetic resonance imaging (MRI) for left ventricular dyssynchrony assessment in left bundle branch block (LBBB), using the time-to-peak contraction timing, and a novel approach based on cross-correlation.
Materials And Methods: We evaluated a canine model dataset (n = 10) before (pre-LBBB) and after induction of isolated LBBB (post-LBBB). Multislice short-axis tagged and cine MRI images were acquired using a 1.
The purpose of this study was to evaluate an automatic boundary detection algorithm of the left ventricle on magnetic resonance (MR) short-axis images with the essential restriction of no manual corrections. The study comprised 13 patients (nine men, four women) and 12 healthy volunteers (11 men, one woman), and institutional review board approval and informed consent were obtained. The outline of the left ventricle was indicated manually on horizontal and vertical long-axis MR images.
View Article and Find Full Text PDF