Multilayer III-V-based solar cells are complex devices consisting of many layers and interfaces. The study and the comprehension of the mechanisms that take place at the interfaces is crucial for efficiency improvement. In this work, we apply frequency-modulated Kelvin probe force microscopy under ambient conditions to investigate the capability of this technique for the analysis of an InP/GaInAs(P) multilayer stack.
View Article and Find Full Text PDFPerovskite (PVK) films deposited directly on n-type crystalline Si substrates were investigated by two operating modes of the surface photovoltage (SPV) method: (i) the metal-insulator-semiconductor (MIS) mode and (ii) the Kelvin probe force microscopy (KPFM). By scanning from 900 to 600 nm in the MIS mode, we consecutively studied the relatively fast processes of carrier generation, transport, and recombination first in Si, then on both sides of the PVK/Si interface, and finally in the PVK layer and its surface. The PVK optical absorption edge was observed in the range of 1.
View Article and Find Full Text PDFThis work focuses on the extraction of the open circuit voltage (V) on photovoltaic nanowires by surface photovoltage (SPV) based on Kelvin probe force microscopy (KPFM) measurements. In a first approach, P-I-N radial junction (RJ) silicon nanowire (SiNW) devices were investigated under illumination by KPFM and current-voltage (I-V) analysis. Within 5%, the extracted SPV correlates well with the V.
View Article and Find Full Text PDFThe fabrication of arrays of silicon nanowires (Si NWs) with well-defined surface coverage using the vapor-liquid-solid process requires a good control of the density and size distribution for the metal catalyst. We report on a cost-effective bottom-up approach to produce Si NWs by a low-temperature deposition technology using plasma-enhanced chemical vapor deposition and tin dioxide (SnO) nanoparticles as the source of tin catalyst. This strategy offers a straightforward method to select specific particle sizes by conventional colloidal techniques, and to tune the surface coverage using a polyelectrolyte layer to efficiently immobilize the particles on the substrate by electrostatic grafting.
View Article and Find Full Text PDFBy coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell's performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V ) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively.
View Article and Find Full Text PDFLarge-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n‑ or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved.
View Article and Find Full Text PDFBoth surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation.
View Article and Find Full Text PDFChemical doping of graphene is a key process for the modulation of its electronic properties and the design and fabrication of graphene-based nanoelectronic devices. Here, we study the adsorption of diluted concentrations of nitric acid (HNO3) onto monolayer graphene/4H-SiC (0001) to induce a variation of the graphene work function (WF). Raman spectroscopy indicates an increase in the defect density subsequent to the doping.
View Article and Find Full Text PDFConductive-probe atomic force microscopy (CP-AFM) measurements reveal the existence of a conductive channel at the interface between p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) as well as at the interface between n-type a-Si:H and p-type c-Si. This is in good agreement with planar conductance measurements that show a large interface conductance. It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions.
View Article and Find Full Text PDFThe electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures.
View Article and Find Full Text PDF