Background: In patients diagnosed with rectal cancer, dose escalation is currently being investigated in a large number of studies. Since there is little known on gross tumor volume (GTV) inter-fraction motion for rectal cancer, a wide variety in margins is used. Purpose of this study is to quantify GTV inter-fraction motion statistics on different timescales and to give estimates of planning target volume (PTV) margins.
View Article and Find Full Text PDFBackground: Rectal cancer patients that show a pathological complete response (pCR) after neo-adjuvant chemo-radiotherapy, have better prognosis. To increase pCR rates several studies escalate the tumor irradiation dose. However, due to lacking tumor contrast on online imaging techniques, no direct tumor setup can be performed and large boost margins are needed to ensure tumor coverage.
View Article and Find Full Text PDFReduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer.
View Article and Find Full Text PDFObjectives: To evaluate the MRI macroscopic and microscopic parameters of mesorectal vasculature in rectal cancer patients.
Methods: Thirteen patients with rectal adenocarcinoma underwent a dynamic contrast-enhanced MRI at 1.5 T using a blood pool agent at the primary staging.
Background: Treatment for locally advanced rectal cancer (LARC) consists of chemoradiation therapy (CRT) and surgery. Approximately 15% of patients show a pathological complete response (pCR). Increased pCR-rates can be achieved through dose escalation, thereby increasing the number patients eligible for organ-preservation to improve quality of life (QoL).
View Article and Find Full Text PDF