Publications by authors named "Jean-Paul Bouchet"

Characterizing the natural diversity of gene expression across environments is an important step in understanding how genotype-by-environment interactions shape phenotypes. Here, we analyzed the impact of water deficit onto gene expression levels in tomato at the genome-wide scale. We sequenced the transcriptome of growing leaves and fruit pericarps at cell expansion stage in a cherry and a large fruited accession and their F hybrid grown under two watering regimes.

View Article and Find Full Text PDF
Article Synopsis
  • The research manipulates enzymes related to ascorbate (vitamin C) in tomato fruit cells, which alters the balance between its different forms and results in various phenotypes.
  • A systems biology approach analyzes how changes in the transcriptome, proteome, and metabolites differ among RNAi lines that target specific ascorbate-related enzymes, revealing an inversion in gene expression patterns.
  • Notably, the study finds that gene expression doesn’t always match protein levels, yet certain proteins and metabolites show correlations to enzyme activity, highlighting complex signaling responses influenced by ascorbate levels.
View Article and Find Full Text PDF

Quantitative trait loci (QTL) have been identified using traditional linkage mapping and positional cloning identified several QTLs. However linkage mapping is limited to the analysis of traits differing between two lines and the impact of the genetic background on QTL effect has been underlined. Genome-wide association studies (GWAs) were proposed to circumvent these limitations.

View Article and Find Full Text PDF

Identification of the polymorphisms controlling quantitative traits remains a challenge for plant geneticists. Multiparent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantitative trait loci (QTL) mapping. Here, we present the first tomato MAGIC population and highlight its potential for the valorization of intraspecific variation, QTL mapping and causal polymorphism identification.

View Article and Find Full Text PDF

Background: One of the goals of genomics is to identify the genetic loci responsible for variation in phenotypic traits. The completion of the tomato genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of genetic variation present in the tomato genome. Like many self-pollinated crops, cultivated tomato accessions show a low molecular but high phenotypic diversity.

View Article and Find Full Text PDF

Integrative systems biology proposes new approaches to decipher the variation of phenotypic traits. In an effort to link the genetic variation and the physiological and molecular bases of fruit composition, the proteome (424 protein spots), metabolome (26 compounds), enzymatic profile (26 enzymes), and phenotypes of eight tomato accessions, covering the genetic diversity of the species, and four of their F1 hybrids, were characterized at two fruit developmental stages (cell expansion and orange-red). The contents of metabolites varied among the genetic backgrounds, while enzyme profiles were less variable, particularly at the cell expansion stage.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum) is the model species for studying fleshy fruit development. An extensive proteome map of the fruit pericarp is described in light of the high-quality genome sequence. The proteomes of fruit pericarp from 12 tomato genotypes at two developmental stages (cell expansion and orange-red) were analyzed.

View Article and Find Full Text PDF

Salinity is a major abiotic stress that adversely affects plant growth and productivity. The physiology of the tomato in salty and nonsalty conditions has been extensively studied, providing an invaluable base to understand the responses of the plants to cultural practices. However few data are yet available at the proteomic level looking for the physiological basis of fruit development, under salt stress.

View Article and Find Full Text PDF

Association mapping has been proposed as an efficient approach to assist in the identification of the molecular basis of agronomical traits in plants. For this purpose, we analyzed the phenotypic and genetic diversity of a large collection of tomato accessions including 44 heirloom and vintage cultivars (Solanum lycopersicum), 127 S. lycopersicum var.

View Article and Find Full Text PDF

Genome-wide association mapping is an efficient way to identify quantitative trait loci controlling the variation of phenotypes, but the approach suffers severe limitations when one is studying inbred crops like cultivated tomato (Solanum lycopersicum). Such crops exhibit low rates of molecular polymorphism and high linkage disequilibrium, which reduces mapping resolution. The cherry type tomato (S.

View Article and Find Full Text PDF

To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one.

View Article and Find Full Text PDF

A mechanistic model predicting the accumulation of tomato fruit sugars was developed in order (i) to dissect the relative influence of three underlying processes: assimilate supply (S), metabolic transformation of sugars into other compounds (M), and dilution by water uptake (D); and (ii) to estimate the genetic variability of S, M, and D. The latter was estimated in a population of 20 introgression lines derived from the introgression of a wild tomato species (Solanum chmielewskii) into S. lycopersicum, grown under two contrasted fruit load conditions.

View Article and Find Full Text PDF

Very few reports have studied the interactions between ascorbate and fruit metabolism. In order to get insights into the complex relationships between ascorbate biosynthesis/recycling and other metabolic pathways in the fruit, we undertook a fruit systems biology approach. To this end, we have produced tomato transgenic lines altered in ascorbate content and redox ratio by RNAi-targeting several key enzymes involved in ascorbate biosynthesis (2 enzymes) and recycling (2 enzymes).

View Article and Find Full Text PDF

Using a complementary (c)DNA-amplified fragment length polymorphism (AFLP) approach, we investigated differential gene expression linked to resistance mechanisms during the incompatible potato - Globodera pallida interaction. Expression was compared between a resistant and a susceptible potato clone, inoculated or not inoculated with G. pallida.

View Article and Find Full Text PDF

The tobacco (Nicotiana tabacum) element Tnt1 is one of the few identified active retrotransposons in plants. These elements possess unique properties that make them ideal genetic tools for gene tagging. Here, we demonstrate the feasibility of gene tagging using the retrotransposon Tnt1 in lettuce (Lactuca sativa), which is the largest genome tested for retrotransposon mutagenesis so far.

View Article and Find Full Text PDF

The catabolism of melatonin, whether naturally occurring or ingested, takes place via two pathways: approximately 70% can be accounted for by conjugation (sulpho- and glucurono-conjugation), and approximately 30% by oxidation. It is commonly thought that the interferon-induced enzyme indoleamine 2,3-dioxygenase (EC 1.13.

View Article and Find Full Text PDF