Publications by authors named "Jean-Pascal Brison"

The potential spin-triplet heavy-fermion superconductor UTe exhibits signatures of multiple distinct superconducting phases. For field aligned along the b axis, a metamagnetic transition occurs at μH ≈ 35 T. It is associated with magnetic fluctuations that may be beneficial for the field-reinforced superconductivity surviving up to H.

View Article and Find Full Text PDF

Two-dimensional electronic states at surfaces are often observed in simple wide-band metals such as Cu or Ag (refs. ). Confinement by closed geometries at the nanometre scale, such as surface terraces, leads to quantized energy levels formed from the surface band, in stark contrast to the continuous energy dependence of bulk electron bands.

View Article and Find Full Text PDF

To unravel the nature of the superconducting symmetry of the enigmatic 5f heavy-fermion UBe_{13}, the pressure dependence of the upper critical field and of the normal state are studied up to 10 GPa. Remarkably, the pressure evolution of the anomalous H_{c2}(T,P) over the entire pressure range up to 5.9 GPa can be successfully explained by the gradual admixture of a field-pressure-induced E_{u} component in an A_{1u} spin-triplet ground state.

View Article and Find Full Text PDF

In most unconventional superconductors, like the high-T_{c} cuprates, iron pnictides, or heavy-fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless an enormous challenge. Among these systems, the orthorhombic uranium ferromagnetic superconductors have a unique position, notably because magnetic fields couple directly to ferromagnetic order, leading to the fascinating discovery of the reemergence of superconductivity in URhGe at a high field.

View Article and Find Full Text PDF

Superconductivity is a unique manifestation of quantum mechanics on a macroscopic scale, and one of the rare examples of many-body phenomena that can be explained by predictive, quantitative theories. The superconducting ground state is described as a condensate of Cooper pairs, and a major challenge has been to understand which mechanisms could lead to a bound state between two electrons, despite the large Coulomb repulsion. An even bigger challenge is to identify experimentally this pairing mechanism, notably in unconventional superconductors dominated by strong electronic correlations, like in high-Tc cuprates, iron pnictides or heavy-fermion compounds.

View Article and Find Full Text PDF