Much of our knowledge about the fitness effects of new mutations has been gained from mutation accumulation (MA) experiments. Yet the fitness effect of single mutations is rarely measured in MA experiments. This raises several issues, notably for inferring epistasis for fitness.
View Article and Find Full Text PDFOutcrossed sex exposes genes to competition with their homologues, allowing alleles that transmit more often than their competitors to spread despite organismal fitness costs. Mitochondrial populations in species with biparental inheritance are thought to be especially susceptible to such cheaters because they lack strict transmission rules like meiosis or maternal inheritance. Yet the interaction between mutation and natural selection in the evolution of cheating mitochondrial genomes has not been tested experimentally.
View Article and Find Full Text PDFWe studied the evolution of the correlation between growth rate r and yield K in experimental lineages of the yeast Saccharomyces cerevisiae. First, we isolated a single clone every approximately 250 generations from each of eight populations selected in a glucose-limited medium for 5000 generations at approximately 6.6 population doublings per day (20 clones per line × 8 lines) and measured its growth rate and yield in a new, galactose-limited medium (with ∼1.
View Article and Find Full Text PDFThe trade-off between growth rate and yield can limit population productivity. Here we tested for this life-history trade-off in replicate haploid and diploid populations of Saccharomyces cerevisiae propagated in glucose-limited medium in batch cultures for 5000 generations. The yield of single clones isolated from the haploid lineages, measured as both optical and population density at the end of a growth cycle, declined during selection and was negatively correlated with growth rate.
View Article and Find Full Text PDFThe pattern (space versus time) and scale (relative to the lifetime of individuals) of environmental variation is thought to play a central role in governing the evolution of the ecological niche and the maintenance of genetic variance in fitness. To evaluate this idea, we serially propagated an initially genetically uniform population of the bacterium Pseudomonas fluorescens for a few hundred generations in environments that differed in both the pattern and scale at which two highly contrasted carbon substrates were experienced. We found that, contrary to expectations, populations often evolved into a single niche specialist adapted to the less-productive substrate in variable environments and that the genetic variance in fitness across different components of the environment was not generally higher in variable environments when compared with constant environments.
View Article and Find Full Text PDFEnvironmental variance can be decomposed into two components: the contrast among patches in the optimal phenotype and the variance in productivity among patches. Both components can influence the outcome of selection in heterogeneous environments. In general genetic diversity within a population should increase as the contrast among patches increases.
View Article and Find Full Text PDF