Publications by authors named "Jean-Michel Wal"

Soybean MON 87751 was developed through -mediated transformation to provide protection certain specific lepidopteran pests by the expression of the Cry1A.105 and Cry2Ab2 proteins derived from . The molecular characterisation data and bioinformatic analyses did not identify issues requiring assessment for food and feed safety.

View Article and Find Full Text PDF

The three‐event stack cotton GHB614 × T304‐40 × GHB119 was produced by conventional crossing to combine three single events, GHB614, T304‐40 and GHB119. The genetically modified organisms (GMO) Panel previously assessed the three single cotton events and did not identify safety concerns. No new data on the single cotton events that could lead to modification of the original conclusions on their safety were identified.

View Article and Find Full Text PDF

Following the submission of application EFSA-GMO-RX-008 under Regulation (EC) No 1829/2003 from Pioneer Hi-Bred International, Inc. and Dow AgroSciences LLC, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant, herbicide-tolerant genetically modified maize 1507 × NK603, for food and feed uses, import and processing, excluding cultivation within the EU. The data received in the context of this renewal application contained a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant.

View Article and Find Full Text PDF

As part of the risk assessment (RA) requirements for genetically modified (GM) plants, according to Regulation (EU) No 503/2013 and the EFSA guidance on the RA of food and feed from GM plants (EFSA GMO Panel, 2011), applicants need to perform a molecular characterisation of the DNA sequences inserted in the GM plant genome. The European Commission has mandated EFSA to develop a technical note to the applicants on, and checking of, the quality of the methodology, analysis and reporting covering complete sequencing of the insert and flanking regions, insertion site analysis of the GM event, and generational stability and integrity. This Technical Note puts together requirements and recommendations for when DNA sequencing is part of the molecular characterisation of GM plants, in particular for the characterisation of the inserted genetic material at each insertion site and flanking regions, the determination of the copy number of all detectable inserts, and the analysis of the genetic stability of the inserts, when addressed by Sanger sequencing or NGS.

View Article and Find Full Text PDF

Maize MON 87411 was developed to confer resistance to corn rootworms ( spp.) by the expression of a modified version of the gene and a DvSnf7 dsRNA expression cassette, and tolerance to glyphosate-containing herbicides by the expression of a CP4 5-enolpyruvylshikimate-3-phosphate synthase () gene. The molecular characterisation data and bioinformatics analyses did not identify issues requiring assessment for food and feed safety.

View Article and Find Full Text PDF

The genetically modified maize event MON810 expresses a Bacillus thuringiensis-derived gene, which encodes the insecticidal protein Cry1Ab to control some lepidopteran insect pests such as the European corn borer. It has been claimed that the immune system may be affected following the oral/intragastric administration of the MON810 maize in various different animal species. In the frame of the EU-funded project GRACE, two 90-day feeding trials, the so-called studies D and E, were performed to analyze the humoral and cellular immune responses of male and female Wistar Han RCC rats fed the MON810 maize.

View Article and Find Full Text PDF

Maize 4114 was developed through -mediated transformation to provide protection against certain lepidopteran and coleopteran pests by expression of the Cry1F, Cry34Ab1 and Cry35Ab1 proteins derived from , and tolerance to the herbicidal active ingredient glufosinate-ammonium by expression of the PAT protein derived from . The molecular characterisation data did not identify issues requiring assessment for food/feed safety. None of the compositional, agronomic and phenotypic differences identified between maize 4114 and the non-genetically modified (GM) comparator(s) required further assessment.

View Article and Find Full Text PDF

The three-event stack cotton GHB614 × LLCotton25 × MON 15985 was produced by conventional crossing to combine three single cotton events, GHB614, LLCotton25 and MON 15985. The EFSA GMO Panel previously assessed the three single events and did not identify safety concerns. No new data on the single events that could lead to modification of the original conclusions on their safety were identified.

View Article and Find Full Text PDF

The GMO Panel was previously not in the position to complete the food/feed safety assessment of maize 5307 due to an inadequate 28-day toxicity study necessary for an appropriate assessment of eCry3.1Ab protein. Following a mandate from the European Commission, the GMO Panel assessed a supplementary 28-day toxicity study in mice on the eCry3.

View Article and Find Full Text PDF

Maize MON 87403 was developed to increase ear biomass at early reproductive phase through the expression of a modified gene from , encoding a plant transcription factor of the HD-Zip II family. The molecular characterisation data and bioinformatic analyses did not identify issues requiring assessment for food and feed safety. No statistically significant differences in the agronomic and phenotypic characteristics tested between maize MON 87403 and its conventional counterpart were identified.

View Article and Find Full Text PDF

Following the submission of application EFSA-GMO-RX-007 under Regulation (EC) No 1829/2003 from Monsanto, the Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application of the herbicide-tolerant and insect-resistant genetically modified maize NK603 x MON810. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.

View Article and Find Full Text PDF

The GMO Panel has previously assessed the single events Bt11, 59122, MIR604, 1507 and GA21 as well as different stacked events corresponding to combinations of these events and no safety concerns were identified. In its assessment of the five-event maize stack Bt11 × 59122 × MIR604 × 1507 × GA21 (application EFSA-GMO-DE-2011-99), the GMO Panel also assessed all the subcombinations of these events not previously assessed, including some for which little or no experimental data were provided, including the three-event stack Bt11 × 1507 × GA21. In line with Article 5 of the decision for authorisation of application EFSA-GMO-DE-2011-99, the European Commission received from Syngenta information on the levels of the newly expressed proteins in subcombination Bt11 × 1507 × GA21 and tasked EFSA to analyse these data and to indicate whether they have an impact on the previously issued opinion on the five-event stack Bt11 × 59122 × MIR604 × 1507 × GA21 and its subcombinations.

View Article and Find Full Text PDF

Following the submission of application EFSA-GMO-RX-004 under Regulation (EC) No 1829/2003 from Bayer CropScience, the Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application of the genetically modified (GM) herbicide-tolerant oilseed rape MS8, RF3 and MS8×RF3. The data received in the context of this renewal application contain post-market environmental monitoring reports, systematic searches and evaluation of literature, updated bioinformatics analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.

View Article and Find Full Text PDF

In this opinion, the GMO Panel assessed the four-event stack maize 1507 × 59122 ×  MON810 ×  NK603 and its ten subcombinations, independently of their origin. The GMO Panel previously assessed the four single events combined in this four-event stack maize and five of their combinations and did not identify safety concerns. No new data on the single events or their previously assessed combinations leading to modification of the original conclusions were identified.

View Article and Find Full Text PDF

This document provides guidance for the risk assessment under Regulation (EC) No 1829/2003 of the unintended, adventitious or technically unavoidable presence in food and feed of low level of genetically modified plant material intended for markets other than in the European Union. In this context, the presence at low level is defined to be maximum 0.9% of genetically modified plant material per ingredient.

View Article and Find Full Text PDF

Following the submission of application EFSA-GMO-RX-006 under Regulation (EC) No 1829/2003 from KWS SAAT SE and Monsanto Company, the Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant genetically modified sugar beet H7-1. The data received in the context of this renewal application contained a systematic search and evaluation of literature, updated bioinformatics analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.

View Article and Find Full Text PDF

Following the submission of application EFSA-GMO-RX-005 under Regulation (EC) No 1829/2003 from Syngenta Crop Protection NV/SA, the Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application of the herbicide-tolerant genetically modified maize GA21. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatics analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.

View Article and Find Full Text PDF

Within the frame of the EU-funded MARLON project, background data were reviewed to explore the possibility of measuring health indicators during post-market monitoring for potential effects of feeds, particularly genetically modified (GM) feeds, on livestock animal health, if applicable. Four case studies (CSs) of potential health effects on livestock were framed and the current knowledge of a possible effect of GM feed was reviewed. Concerning allergenicity (CS-1), there are no case-reports of allergic reactions or immunotoxic effects resulting from GM feed consumption as compared with non-GM feed.

View Article and Find Full Text PDF

This review explores the possibilities to determine livestock consumption of genetically modified (GM) feeds/ingredients including detection of genetically modified organism (GMO)-related DNA or proteins in animal samples, and the documentary system that is in place for GM feeds under EU legislation. The presence and level of GMO-related DNA and proteins can generally be readily measured in feeds, using established analytical methods such as polymerase chain reaction and immuno-assays, respectively. Various technical challenges remain, such as the simultaneous detection of multiple GMOs and the identification of unauthorized GMOs for which incomplete data on the inserted DNA may exist.

View Article and Find Full Text PDF

In this opinion, the EFSA Panel on Genetically Modified Organisms (GMO Panel) assessed the three-event stack maize MON 87427 × MON 89034 × NK603 and its three subcombinations, independently of their origin. The GMO Panel has previously assessed the three single events combined to produce this three-event stack maize and did not identify safety concerns. No new data on the single events, leading to modification of the original conclusions on their safety, were identified.

View Article and Find Full Text PDF

In this opinion, the GMO Panel assessed the five-event stack maize MON 87427 × MON 89034 ×1507 × MON 88017 × 59122 and its 25 subcombinations, independently of their origin. The GMO Panel has previously assessed the five single events combined to produce this five-event stack maize and 11 subcombinations of these events and did not identify safety concerns. No new data on the single events or their previously assessed subcombinations, leading to modification of the original conclusions were identified.

View Article and Find Full Text PDF

Following the submission of application EFSA-GMO-RX-003 under Regulation (EC) No 1829/2003 from Pioneer Overseas Corporation and Dow AgroSciences LLC, the Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application of the insect-resistant genetically modified maize 59122. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatics analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.

View Article and Find Full Text PDF

This document provides supplementary guidance on specific topics for the allergenicity risk assessment of genetically modified plants. In particular, it supplements general recommendations outlined in previous EFSA GMO Panel guidelines and Implementing Regulation (EU) No 503/2013. The topics addressed are non-IgE-mediated adverse immune reactions to foods, protein digestibility tests and endogenous allergenicity.

View Article and Find Full Text PDF

Following a request from the European Commission, the Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) assessed the annual post-market environmental monitoring (PMEM) report for the 2015 growing season of the Cry1Ab-expressing maize event MON 810 provided by Monsanto Europe S.A. The GMO Panel concludes that the insect resistance monitoring data submitted to EFSA do not indicate a decrease in susceptibility of field Iberian populations of corn borers to the Cry1Ab protein during the 2015 season.

View Article and Find Full Text PDF

In this opinion, the GMO Panel assessed the three-event stack oilseed rape (OSR) MON 88302 × MS8 × RF3 and its three subcombinations, independently of their origin. The GMO Panel has previously assessed the single events combined to produce this three-event stack OSR and did not identify safety concerns; no new information that would modify the original conclusions was identified. The combination of the single OSR events and of the newly expressed proteins in the three-event stack OSR does not give rise to food and feed safety and nutrition issues - based on the molecular, agronomic/phenotypic and compositional characteristics.

View Article and Find Full Text PDF