Tumor-infiltrating CD8 + T cells progressively lose functionality and fail to reject tumors. The underlying mechanism and re-programing induced by checkpoint blockers are incompletely understood. We show here that genetic ablation or pharmacological inhibition of histone lysine methyltransferase Suv39h1 delays tumor growth and potentiates tumor rejection by anti-PD-1.
View Article and Find Full Text PDFMucopolysaccharidoses are a class of lysosomal storage diseases, characterized by enzymatic deficiency in the degradation of specific glycosaminoglycans (GAG). Pathological accumulation of excess GAG leads to multiple clinical symptoms with systemic character, most severely affecting bones, muscles and connective tissues. Current therapies include periodic intravenous infusion of supplementary recombinant enzyme (Enzyme Replacement Therapy-ERT) or bone marrow transplantation.
View Article and Find Full Text PDFBlockade of interleukin (IL)-23 or IL-17 with biologics is clinically validated as a treatment of psoriasis. However, the clinical impact of targeting other nodes within the IL-23/IL-17 pathway, especially with small molecules, is less defined. We report on a novel small molecule inverse agonist of retinoid acid-related orphan receptor (ROR) t and its efficacy in preclinical models of psoriasis and arthritis.
View Article and Find Full Text PDFA high-throughput screen against Inventiva's compound library using a Gal4/RORγ-LBD luciferase reporter gene assay led to the discovery of a new series of quinoline sulphonamides as RORγ inhibitors, eventually giving rise to a lead compound having an interesting in vivo profile after oral administration. This lead was evaluated in a target engagement model in mouse, where it reduced IL-17 cytokine production after immune challenge. It also proved to be active in a multiple sclerosis model (EAE) where it reduced the disease score.
View Article and Find Full Text PDFHere, we describe the identification and synthesis of novel indole sulfonamide derivatives that activate the three peroxisome proliferator activated receptor (PPAR) isoforms. Starting with a PPARα activator, compound 4, identified during a high throughput screening (HTS) of our proprietary screening library, a systematic optimization led to the discovery of lanifibranor (IVA337) 5, a moderately potent and well balanced pan PPAR agonist with an excellent safety profile. In vitro and in vivo, compound 5 demonstrated strong activity in models that are relevant to nonalcoholic steatohepatitis (NASH) pathophysiology suggesting therapeutic potential for NASH patients.
View Article and Find Full Text PDFIVA337 is a pan-peroxisome proliferator-activated receptor (PPAR) agonist with moderate and well-balanced activity on the three PPAR isoforms (α, γ, δ). PPARs are regulators of lipid metabolism, inflammation, insulin resistance, and fibrogenesis. Different single or dual PPAR agonists have been investigated for their therapeutic potential in nonalcoholic steatohepatitis (NASH), a chronic liver condition in which steatosis coexists with necroinflammation, potentially leading to liver fibrosis and cirrhosis.
View Article and Find Full Text PDFObjective: To evaluate the antifibrotic effects of the pan-peroxisome proliferator-activated receptor (PPAR) agonist IVA337 in preclinical mouse models of pulmonary fibrosis and related pulmonary hypertension (PH).
Methods: IVA337 has been evaluated in the mouse model of bleomycin-induced pulmonary fibrosis and in Fra-2 transgenic mice, this latter being characterised by non-specific interstitial pneumonia and severe vascular remodelling of pulmonary arteries leading to PH. Mice received two doses of IVA337 (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks.
Background: The pathogenesis of systemic sclerosis (SSc) involves a distinctive triad of autoimmune, vascular and inflammatory alterations resulting in fibrosis. Evidence suggests that peroxisome proliferator-activated receptors (PPARs) play an important role in SSc-related fibrosis and their agonists may become effective therapeutic targets.
Objective: To determine the expression of PPARs in human fibrotic skin and investigate the effects of IVA337, a pan PPAR agonist, in in vitro and in vivo models of fibrosis.
The bradykinin (BK) B1 receptor is an attractive target for the treatment of chronic pain and inflammation. Starting from a dual B1 and B2 antagonist, novel antagonists were designed that display low-nanomolar affinity for human B1 receptor and selectivity over B2. Initially, potent imidazoline derivatives were studied, but these compounds suffered from low bioavailability.
View Article and Find Full Text PDFCXC-chemokine receptors 1 and 2 and their ligands (CXCL1, 2, 3, 5, 6, 7, and 8) induce the selective recruitment of neutrophils during inflammation. Such receptors have not been characterized yet in guinea pig, an animal inflammation model of interest. We report the identification, cloning, and characterization of a CXCL8 receptor in guinea pig.
View Article and Find Full Text PDF