Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality.
View Article and Find Full Text PDFFFA2, also called GPR43, is a G-protein coupled receptor for short chain fatty acids which is involved in the mediation of inflammatory responses. A class of azetidines was developed as potent FFA2 antagonists. Multiparametric optimization of early hits with moderate potency and suboptimal ADME properties led to the identification of several compounds with nanomolar potency on the receptor combined with excellent pharmacokinetic (PK) parameters.
View Article and Find Full Text PDFStructural modification performed on a 4-methyl-4-(4-hydroxyphenyl)hydantoin series is described which resulted in the development of a new series of 4-(hydroxymethyl)diarylhydantoin analogues as potent, partial agonists of the human androgen receptor. This led to the identification of (S)-(-)-4-(4-(hydroxymethyl)-3-methyl-2,5-dioxo-4-phenylimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile ((S)-(-)-18a, GLPG0492) evaluated in vivo in a classical model of orchidectomized rat. In this model, (-)-18a exhibited anabolic activity on muscle, strongly dissociated from the androgenic activity on prostate after oral dosing.
View Article and Find Full Text PDFA novel selective androgen receptor modulator scaffold has been discovered through structural modifications of hydantoin antiandrogens. Several 4-(4-hydroxyphenyl)-N-arylhydantoins displayed partial agonism with nanomolar in vitro potency in transactivation experiments using androgen receptor (AR) transfected cells. In a standard castrated male rat model, several compounds showed good anabolic activity on levator ani muscle, dissociated from the androgenic activity on ventral prostate, after oral dosing at 30 mg/kg.
View Article and Find Full Text PDF