Near-infrared spectroscopy of the C2H2-Ar, Kr complexes was performed in the spectral region overlapping the ν3/ν2 + ν4 + ν5 Fermi-type resonance of C2H2. The experiment was conducted along the HElium NanoDroplet Isolation (HENDI) technique in order to study the coupling dynamics between a floppy molecular system (C2H2-Ar and C2H2-Kr) and a mesoscopic quantum liquid (the droplet). Calculations were performed using a spectral element based close-coupling program and state-of-the-art 2-dimensional potential energy surfaces to determine the bound states of the C2H2-Ar and C2H2-Kr complexes and simulate the observed spectra.
View Article and Find Full Text PDFWe apply the spectral element method to the determination of scattering and bound states of the multichannel Schrödinger equation. In our approach, the reaction coordinate is discretized on a grid of points whereas the internal coordinates are described by either purely diabatic or locally diabatic (diabatic-by-sector) bases. Bound levels and scattering matrix elements are determined with spectral accuracy using relatively small number of points.
View Article and Find Full Text PDFThe excitation function of the S((1)D) + D2 reaction was determined in a crossed molecular beam apparatus for collision energies ranging from 1817 to 47 J mol(-1) in the near-cold regime. A very good overall agreement was found between experimental data and the theoretical results obtained using the ab initio potential energy surface built by Ho and coworkers and different methods: time-independent quantum dynamics (QM), semiclassical mean potential capture theory (sc-MPCT), and quasi-classical trajectories (QCT). The general trend of the experimental excitation function is well reproduced in most of the range by a simple capture calculation with an R(-6) dispersion potential.
View Article and Find Full Text PDFWe present quantum-scattering calculations of (4)He and (3)He colliding with (87)Rb2. For both helium isotopes, the elastic and inelastic rate coefficients are strongly influenced by the J = 1 partial wave. For the lighter isotope, a strong resonance feature of the J = 1 partial wave is responsible for an extremely efficient vibrational relaxation process.
View Article and Find Full Text PDFWe report integral cross sections for the S(1D2)+HD(j=0)→DS+H and HS+D reaction channels obtained through crossed-beam experiments reaching collision energies as low as 0.46 meV and from adiabatic time-independent quantum-mechanical calculations. While good overall agreement with experiment at energies above 10 meV is observed, neither the product channel branching ratio nor the low-energy resonancelike features in the HS+D channel can be theoretically reproduced.
View Article and Find Full Text PDFWe have developed a three-dimensional potential energy surface for the lowest triplet state of the Rb(2)He complex. A global analytic fit is provided as in the supplementary material [see supplementary material at http://dx.doi.
View Article and Find Full Text PDFThe integral cross section of the S((1)D(2)) + H(2)(j = 0) → SH + H reaction has been measured for the first time at collision energies from 0.820 down to 0.078 kJ mol(-1) in a high-resolution crossed beam experiment.
View Article and Find Full Text PDFWe report combined studies on the prototypical S(1D2) + H2 insertion reaction. Kinetics and crossed-beam experiments are performed in experimental conditions approaching the cold energy regime, yielding absolute rate coefficients down to 5.8 K and relative integral cross sections to collision energies as low as 0.
View Article and Find Full Text PDFThe H+ +D2(v=0,j=0)-->HD+D + reaction has been theoretically investigated by means of a time independent exact quantum mechanical approach, a quantum wave packet calculation within an adiabatic centrifugal sudden approximation, a statistical quantum model, and a quasiclassical trajectory calculation. Besides reaction probabilities as a function of collision energy at different values of the total angular momentum, J, special emphasis has been made at two specific collision energies, 0.1 and 0.
View Article and Find Full Text PDFA potential energy surface for the lowest quartet electronic state ((4)A(')) of lithium trimer is developed and used to study spin-polarized Li+Li(2) collisions at ultralow kinetic energies. The potential energy surface allows barrierless atom exchange reactions. Elastic and inelastic cross sections are calculated for collisions involving a variety of rovibrational states of Li(2).
View Article and Find Full Text PDFNonadiabatic theory of molecular spectra of diatomic molecules is presented. It is shown that in the fully nonadiabatic framework, the rovibrational wave functions describing the nuclear motions in diatomic molecules can be obtained from a system of coupled differential equations. The rovibrational wave functions corresponding to various electronic states are coupled through the relativistic spin-orbit coupling interaction and through different radial and angular coupling terms, while the transition intensities can be written in terms of the ground state rovibrational wave function and bound rovibrational wave functions of all excited electronic states that are electric dipole connected with the ground state.
View Article and Find Full Text PDFThe H+ + H2 exchange reaction has been studied theoretically by means of a different variety of methods as an exact time independent quantum mechanical, approximate quantum wave packet, statistical quantum, and quasiclassical trajectory approaches. Total and state-to-state reaction probabilities in terms of the collision energy for different values of the total angular momentum obtained with these methods are compared. The dynamics of the reaction is extensively studied at the collision energy of E(coll)=0.
View Article and Find Full Text PDFIn this paper, we report a combined experimental and theoretical study on the dynamics of the N(2D) + H2 insertion reaction at a collision energy of 15.9 kJ mol(-1). Product angular and velocity distributions have been obtained in crossed beam experiments and simulated by using the results of quantum mechanical (QM) scattering calculations on the accurate ab initio potential energy surface (PES) of Pederson et al.
View Article and Find Full Text PDFWe carry out the first quantum dynamics calculations on ultracold atom-diatom collisions in isotopic mixtures. The systems studied are spin-polarized 7Li + 6Li7Li, 7Li + 6Li2, 6Li + 6Li7Li, and 6Li + 7Li2. Reactive scattering can occur for the first two systems even when the molecules are in their ground rovibrational states, but is slower than vibrational relaxation in homonuclear systems.
View Article and Find Full Text PDFA global adiabatic potential energy surface (PES) corresponding to the second singlet state 1 1A" (1 1B1) of CH2 has been computed in a similar way as the first singlet state 1 1A' in our previous work [B. Bussery-Honvault et al., J.
View Article and Find Full Text PDFWe have carried out quantum dynamical calculations of vibrational quenching in Li + Li(2) collisions for both bosonic (7)Li and fermionic (6)Li. These are the first ever such calculations involving fermionic atoms. We find that for the low initial vibrational states considered here (v < or = 3), the quenching rates are not suppressed for fermionic atoms.
View Article and Find Full Text PDFUltracold collisions between spin-polarized Na atoms and vibrationally excited Na2 molecules are investigated theoretically, using a reactive scattering formalism (including atom exchange). Calculations are carried out on both pairwise additive and nonadditive potential energy surfaces for the quartet electronic state. The Wigner threshold laws are followed for energies below 10(-5) K.
View Article and Find Full Text PDFThe quantum (QM) scattering theory has been difficult to apply to the family of insertion reactions and the approximate quasiclassical trajectory (QCT) method or statistical calculations were mostly applied. In this Letter, we compare the experimental differential cross sections for the title insertion reaction with the results of QM and QCT calculations on an ab initio potential energy surface. The QM results reproduce well the crossed beam experiment, while a small, but significant, difference in the QCT ones points to quantum effects, possibly the occurrence of tunneling through the combined potential and centrifugal barrier.
View Article and Find Full Text PDF