The advanced radiographic capability (ARC) laser system, part of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, is a short-pulse laser capability integrated into the NIF. The ARC is designed to provide adjustable pulse lengths of ∼1-38 in four independent beamlets, each with energies up to 1 kJ (depending on pulse duration). A detailed model of the ARC lasers has been developed that predicts the time- and space-resolved focal spots on target for each shot.
View Article and Find Full Text PDFWe extend the split-optic approach for mitigating filamentation in a thick optical component previously proposed for small beams to conditions relevant to high-power lasers. The split-optic approach divides a thick optic into two thinner optics separated by an airgap to reduce filamentation through diffraction management. Our numerical study focuses on filamentation of a flat-top beam with intensity modulation noise sources passing through a split-optic system.
View Article and Find Full Text PDFThe Bespalov-Talanov gain (BT-gain) and IL-rule (i.e., the product of input intensity and self-focusing length is constant) expressions are examined and generalized for filamentation under realistic conditions associated with high power lasers: filamentation seeded by both amplitude and phase perturbations on a large, flat-top beam, and the impact of cross-phase modulation from unconverted light in UV frequency-converted lasers.
View Article and Find Full Text PDFCorrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF.
View Article and Find Full Text PDF