Deciphering the connectome, the ensemble of synaptic connections that underlie brain function, is a central goal of neuroscience research. Here we report the in vivo mapping of connections between presynaptic and postsynaptic partners in zebrafish, by adapting the trans-Tango genetic approach that was first developed for anterograde transsynaptic tracing in Drosophila. Neural connections were visualized between synaptic partners in larval retina, brain and spinal cord and followed over development.
View Article and Find Full Text PDFHemispheric specializations are well studied at the functional level but less is known about the underlying neural mechanisms. We identified a small cluster of cholinergic neurons in the dorsal habenula (dHb) of zebrafish, defined by their expression of the a () gene and their efferent connections with a subregion of the ventral interpeduncular nucleus (vIPN). The -expressing neurons in the right dHb are innervated by a subset of mitral cells from both the left and right olfactory bulb and are activated upon exposure to the odorant cadaverine that is repellent to adult zebrafish.
View Article and Find Full Text PDF