G-protein-coupled receptors (GPCRs) are dimeric proteins, but the functional consequences of the process are still debated. Active GPCR conformations are promoted either by agonists or constitutive activity. Inverse agonists decrease constitutive activity by promoting inactive conformations.
View Article and Find Full Text PDFIn this work, we studied the mechanisms of classical activation and inactivation of signal transduction by the histamine H3 receptor, a 7-helix transmembrane bundle G-Protein Coupled Receptor through long-time-scale atomistic molecular dynamics simulations of the receptor embedded in a hydrated double layer of dipalmitoyl phosphatidyl choline, a zwitterionic polysaturated ordered lipid. Three systems were prepared: the apo receptor, representing the constitutively active receptor; and two holo-receptors-the receptor coupled to the antagonist/inverse agonist ciproxifan, representing the inactive state of the receptor, and the receptor coupled to the endogenous agonist histamine and representing the active state of the receptor. An extensive analysis of the simulation showed that the three states of H3R present significant structural and dynamical differences as well as a complex behavior given that the measured properties interact in multiple and interdependent ways.
View Article and Find Full Text PDFHistaminergic H3 inverse agonists, by stimulating central histamine release, represent attractive drug candidates to treat cognitive disorders. The present studies aimed to describe the mechanistic profile of S 38093 a novel H3 receptors inverse agonist. S 38093 displays a moderate affinity for rat, mouse and human H3 receptors (Ki=8.
View Article and Find Full Text PDFRationale: The basis of the unique clinical profile of the antipsychotic clozapine is not yet elucidated. Brain histamine receptors may play a role in schizophrenia and its treatment, but their involvement in the profile of clozapine remained unknown.
Objectives: We explored the properties of clozapine and its two metabolites, N-desmethylclozapine (NDMC) and clozapine N-oxide, at the four human histaminergic receptors.
The role of histamine neurons in schizophrenia and psychostimulant abuse remains unclear. Behavioural sensitization to psychostimulants is a cardinal feature of these disorders. Here, we have explored the ability of imetit and ciproxifan (CPX), a reference H₃-receptor agonist and inverse agonist, respectively, to modulate locomotor sensitization induced in mice by methamphetamine (MET).
View Article and Find Full Text PDFThe central effects of histamine are mediated by H(1), H(2) and H(3) receptors. The H(3) receptor inhibits histamine release in brain. Therefore, H(3) receptor inverse agonists, by suppressing this brake, enhance histamine neuron activity.
View Article and Find Full Text PDFNeuropathological studies have reported a strong neurofibrillary degeneration of the tuberomamillary nucleus, the region of origin of histamine neurons, in Alzheimer's disease (AD). Histaminergic neurons enhance cognition and memory, suggesting that their degeneration may contribute to the cognitive decline of AD. Besides neurons, the brain histaminergic system comprises mast cells and microglia that can also produce histamine.
View Article and Find Full Text PDFRationale: H(3)-receptor inverse agonists raise a great interest as innovative therapeutics in several central disorders. Whereas their procognitive properties are well established, their antipsychotic-like properties are still debated.
Objectives: We further explored the effect of maximal doses (3-10 mg/kg) of ciproxifan, BF2.
Constitutive activity has been mainly recorded for numerous overexpressed and/or mutated receptors. The histamine H(3) receptor (H(3)R) is a target of choice to study the physiological relevance of this process. In rodent brain, postsynaptic H(3)Rs show high constitutive activity, and presynaptic H(3) autoreceptors that show constitutive activity have a predominant role in inhibiting the activity of histamine neurons.
View Article and Find Full Text PDFWith the availability of an increased number of experimental tools, for example potent and brain-penetrating H1-, H2-, and H3-receptor ligands and mutant mice lacking the histamine synthesis enzyme or the histamine receptors, the functional roles of histaminergic neurons in the brain have been considerably clarified during the recent years, particularly their major role in the control of arousal, cognition, and energy balance. Various approaches tend to establish the implication of histaminergic neurons in schizophrenia. A strong hyperactivity of histamine neurons is induced in rodent brain by administration of methamphetamine or NMDA-receptor antagonists.
View Article and Find Full Text PDFBF2.649, a high affinity and selective non-imidazole histamine H(3)-receptor antagonist/inverse agonist, was found to easily enter the brain after oral administration to mice: it displayed a ratio of brain/plasma levels of about 25 when considering either C(max) or AUC values. At low oral doses (2.
View Article and Find Full Text PDFThe interactions in the rat striatum between H(3) receptors (H(3)Rs) and D(2) receptors (D(2)Rs) were investigated with the [(35)S]GTPgamma[S] binding assay. The H(3)R agonist (R)alpha-methylhistamine increased [(35)S]GTPgamma[S] binding to striatal membranes with an EC(50)=14+/-5 nM and a maximal effect of +19+/-1%. This effect was inhibited by the H(3)R antagonist ciproxifan with a K(i)=1.
View Article and Find Full Text PDFThe modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect.
View Article and Find Full Text PDFVarious histamine derivatives were investigated at the human H3 receptor (H3R) and H4 receptor (H4R) stably expressed in human embryonic kidney (HEK)-293 cells using [125I]iodoproxyfan and [3H]histamine binding, respectively. In Tris buffer, [3H]histamine binding to membranes of HEK(hH4R) cells was monophasic (K(D) of 3.8+/-0.
View Article and Find Full Text PDFIn an effort to design new hybrid compounds with dual properties, i.e. binding affinity at histamine H(3) receptors and inhibitory potency at the catabolic enzyme histamine N(tau)-methyltransferase (HMT), a novel series of 1-substituted piperidine derivatives was synthesized.
View Article and Find Full Text PDFThe existence of mouse H3-receptor isoforms was investigated by PCR analysis and cDNA cloning. Splicing mechanisms previously reported in various species are conserved in the mouse. The retention/deletion of a fragment in the third intracellular loop of the mouse receptor leads to the existence of three isoforms designated mH(3(445)), mH(3(413)) and mH(3(397)) according to the length of their deduced amino acid sequence.
View Article and Find Full Text PDF4-(3-Aryloxypropyl)-1H-imidazoles, which possess a meta-positioned substituent in the aryl ring, have been synthesized and tested for activity at histamine H(3) receptors. The compounds having a CN, Me, or Br substituent were found to be antagonists, whereas CF(3), Et, i-Pr, t-Bu, COCH(3), or NO(2) substituents remarkably afforded partial agonists when tested in vitro on rat cerebral cortex synaptosomes for inhibition of [(3)H]histamine release. The compounds were also active in vivo, and furthermore, the CF(3)-substituted compound trifluproxim (UCL 1470, 7) acted as a potent full agonist in vivo, having ED(50) = 0.
View Article and Find Full Text PDFIn an effort to develop new histamine H(3) receptor antagonists usable as pharmacological tools we present here novel unsymmetrical ether derivatives. Etherification of different omega-(1H-imidazol-4-yl)alkyl scaffolds led to compounds containing alkyl chains of increasing lengths either with or without unsaturated termini, cycloalkyl or arylalkyl moieties, or additional heteroatoms. When investigated in an in vitro assay on rat synaptosomes, the majority of compounds displayed potencies in the low nanomolar concentration range at the H(3) receptor, e.
View Article and Find Full Text PDFRecent bioisoteric replacements in histamine H3 receptor ligands with an exchange of the imidazole moiety by a piperidino group as well as of the trimethylene chain in 4-((3-phenoxy)propyl)-lH-imidazole derivatives (proxifan class) by an alpha,alpha'-xylendiyl linker represents the starting point in the development of 1-(4-(phenoxymethyl)benzyl)piperidines as a new class of nonimidazole histamine H3 receptor antagonists. According to different strategies in optimization of imidazole-containing antagonists the central benzyl phenyl ether moiety was replaced by numerous other polar functionalities. Additionally, the ortho- and meta-analogues of the lead were synthesized to determine the influence of the position of the piperidinomethyl substituent.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2003
G protein-coupled receptors (GPCRs) are allosteric proteins that adopt inactive (R) and active (R*) conformations in equilibrium. R* is promoted by agonists or occurs spontaneously, leading to constitutive activity of the receptor. Conversely, inverse agonists promote R and decrease constitutive activity.
View Article and Find Full Text PDFIn this study, a novel series of imidazole-containing compounds with dual properties, that is, inhibitory potency at the enzyme histamine N(tau)-methyltransferase (HMT) and antagonist potency at histamine H(3) receptors was designed and synthesized. Pharmacologically, these new hybrid drugs were evaluated in functional assays for their inhibitory potencies at rat kidney HMT and for their antagonist activities on synaptosomes of rat cerebral cortex. For selected compounds, binding affinities at recombinant human histamine H(3) receptors were determined.
View Article and Find Full Text PDFIn an extension of very recently published studies on successful imidazole replacements in some series of histamine H(3) receptor antagonists, we report on a new class of lipophilic nonimidazole antagonist having an aliphatic tertiary amino moiety connected to a benzyl template substituted in the 4-position by a phenoxymethyl group. The structural modifications were performed with the intention to avoid possible negative side effects reported for other series of antagonists. The novel compounds combine different characteristics of recently developed histamine H(3) receptor antagonists.
View Article and Find Full Text PDFWe have explored the effect of histamine H3-receptor ligands on the regulation of neuropeptide mRNA expression in the striatum by using in situ hybridization performed with proenkephalin, prodynorphin, substance P and proneurotensin riboprobes. Acute administration of ciproxifan, an H3-receptor antagonist/inverse agonist, or (R)-alpha-methylhistamine, an H3-receptor agonist, did not modify the striatal expression of the neuropeptides by itself. However, ciproxifan strongly and differentially modulated the effect of a single administration of 3 mg/kg methamphetamine on neuropeptide mRNA expression.
View Article and Find Full Text PDF