Publications by authors named "Jean-Martin Beaulieu"

Background: Glutamatergic system dysfunction contributes to a full spectrum of schizophrenia-like symptoms, including the cognitive and negative symptoms that are resistant to treatment with antipsychotic drugs (APDs). Aripiprazole, an atypical APD, acts as a dopamine partial agonist, and its combination with haloperidol (a typical APD) has been suggested as a potential strategy to improve schizophrenia. Recently, an analog of aripiprazole, UNC9994, was developed.

View Article and Find Full Text PDF

Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS.

View Article and Find Full Text PDF
Article Synopsis
  • The Concise Guide to PHARMACOLOGY 2023/24 offers a summarized overview of approximately 1800 drug targets and around 6000 interactions with 3900 ligands, mostly in a tabular format.
  • It focuses on selective pharmacology and includes links to an open access knowledgebase for more detailed drug information.
  • The guide divides drug targets into six major categories, providing essential summaries and guidance based on the latest pharmacological data available as of mid-2023, while serving as an official resource by the International Union of Basic and Clinical Pharmacology.
View Article and Find Full Text PDF

Background: miR-137 is a microRNA involved in brain development, regulating neurogenesis and neuronal maturation. Genome-wide association studies have implicated miR-137 in schizophrenia risk but do not explain its involvement in brain function and underlying biology. Polygenic risk for schizophrenia mediated by miR-137 targets is associated with working memory, although other evidence points to emotion processing.

View Article and Find Full Text PDF

We investigated the mechanisms underlying the effects of the antidepressant fluoxetine on behavior and adult hippocampal neurogenesis (AHN). After confirming our earlier report that the signaling molecule β-arrestin-2 (β-Arr2) is required for the antidepressant-like effects of fluoxetine, we found that the effects of fluoxetine on proliferation of neural progenitors and survival of adult-born granule cells are absent in the β-Arr2 knockout (KO) mice. To our surprise, fluoxetine induced a dramatic upregulation of the number of doublecortin (DCX)-expressing cells in the β-Arr2 KO mice, indicating that this marker can be increased even though AHN is not.

View Article and Find Full Text PDF

Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3β, have more than 100 validated substrates.

View Article and Find Full Text PDF
Article Synopsis
  • The Concise Guide to Pharmacology 2021/22 offers a streamlined overview of nearly 1900 human drug targets, focusing on selective pharmacology and organized mainly in tables for quick reference.
  • The guide serves as a reliable, citable resource that distills extensive online content while ensuring it reflects the status as of mid-2021, distinct from ongoing database updates.
  • Key pharmacological targets include G protein-coupled receptors, ion channels, and enzymes, with official nomenclature and references provided to assist further research and understanding.
View Article and Find Full Text PDF

Background: Genome-Wide Association Studies (GWASs) have identified several genes associated with Schizophrenia (SCZ) and exponentially increased knowledge on the genetic basis of the disease. In addition, products of GWAS genes interact with neuronal factors coded by genes lacking association, such that this interaction may confer risk for specific phenotypes of this brain disorder. In this regard, fragile X mental retardation syndrome-related 1 (FXR1) gene has been GWAS associated with SCZ.

View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondrial health is essential for brain development and diseases, but evaluating it in clinical settings is challenging due to ethical and practical issues.
  • - Researchers created cerebral organoids from induced pluripotent stem cells (iPSCs) derived from human blood cells to study mitochondrial health across different development stages.
  • - The study found that mitochondrial features and neuron activity were maintained throughout the process, offering a potential model for better assessment of mitochondrial health in various human diseases using accessible tissue samples.
View Article and Find Full Text PDF

The fragile X autosomal homolog 1 (Fxr1) is regulated by lithium and has been GWAS-associated with schizophrenia and insomnia. Homeostatic regulation of synaptic strength is essential for the maintenance of brain functions and involves both cell-autonomous and system-level processes such as sleep. We examined the contribution of Fxr1 to cell-autonomous homeostatic synaptic scaling and neuronal responses to sleep loss, using a combination of gene overexpression and Crispr/Cas9-mediated somatic knockouts to modulate gene expression.

View Article and Find Full Text PDF

The release of dopamine (DA) into target brain areas is considered an essential event for the modulation of many physiological effects. While the anterior cingulate cortex (ACC) has been implicated in pain related behavioral processes, DA modulation of synaptic transmission within the ACC and pain related phenotypes remains unclear. Here we characterized a Crispr/Cas9 mediated somatic knockout of the D1 receptor (D1R) in all neuronal subtypes of the ACC and find reduced mechanical thresholds, without affecting locomotion and anxiety.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used a CRISPR-Cas9 technique to selectively delete GSK3β in D2-expressing neurons of the adult medial prefrontal cortex (mPFC), enabling them to analyze changes in gene translation specifically in these neurons.
  • * The deletion of GSK3β in these neurons significantly impacted anxiety, cognitive functions, and social behavior, highlighting the importance of GSK3β in mood regulation and suggesting that targeted gene editing can
View Article and Find Full Text PDF

D2 autoreceptors provide an important regulatory mechanism of dopaminergic neurotransmission. However, D2 receptors are also expressed as heteroreceptors at postsynaptic membranes. The expression and the functional characteristics of both, D2 auto- and heteroreceptors, differ between brain regions.

View Article and Find Full Text PDF

Human cerebral organoid (hCO) models offer the opportunity to understand fundamental processes underlying human-specific cortical development and pathophysiology in an experimentally tractable system. Although diverse methods to generate brain organoids have been developed, a major challenge has been the production of organoids with reproducible cell type heterogeneity and macroscopic morphology. Here, we have directly addressed this problem by establishing a robust production pipeline to generate morphologically consistent hCOs and achieve a success rate of >80%.

View Article and Find Full Text PDF

Peripheral biomarker and post-mortem brains studies have shown alterations of neuronal calcium sensor 1 (Ncs-1) expression in people with bipolar disorder or schizophrenia. However, its engagement by psychiatric medications and potential contribution to behavioral regulation remains elusive. We investigated the effect on Ncs-1 expression of valproic acid (VPA), a mood stabilizer used for the management of bipolar disorder.

View Article and Find Full Text PDF

5-HT receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease.

View Article and Find Full Text PDF

Phosphorylation of heptahelical receptors is thought to regulate G protein signaling, receptor endocytosis, and non-canonical signaling via recruitment of β-arrestins. We investigated chemokine receptor functionality under phosphorylation-deficient and β-arrestin-deficient conditions by studying interneuron migration in the embryonic cortex. This process depends on CXCL12, CXCR4, G protein signaling and on the atypical CXCL12 receptor ACKR3.

View Article and Find Full Text PDF

Akt protein family (Akt1, Akt2 and Akt3) of serine/threonine kinases, also known as protein kinase B, are enzymes implicated in many physiological and pathological processes in the central nervous system. A striking feature of these enzymes is their ability to interact with several molecular targets such as the glycogen synthase kinase 3 (GSK-3). Among Akt isoforms, the Akt3 is significantly more expressed in the brain and the present investigation was designed to determine whether the Akt3/GSK-3 pathway plays a role in the learning of a complex motor skill.

View Article and Find Full Text PDF

Antipsychotic drugs targeting dopamine neurotransmission are still the principal mean of therapeutic intervention for schizophrenia. However, about one third of people do not respond to dopaminergic antipsychotics. Genome wide association studies (GWAS), have shown that multiple genetic factors play a role in schizophrenia pathophysiology.

View Article and Find Full Text PDF

The dopamine D2 receptor (DRD2) remains the principal target of antipsychotic drugs used for the management of schizophrenia and other psychotic disorders. This receptor is highly expressed within the basal ganglia, more specifically the striatal caudate nucleus and the nucleus accumbens. The general functions, signaling and behavioral contributions of striatal DRD2 are well understood.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how D2 dopamine receptors (Drd2) affect cognitive function and neurotransmission in schizophrenia, revealing their role in both principal neurons and fast-spiking interneurons.
  • Using advanced techniques, they identified new clusters of D2-expressing neurons in the limbic and sensory regions of the adult mouse brain, along with variations in D2 receptor expression across different neuron types.
  • The study suggests potential genetic and therapeutic strategies targeting specific D2-expressing neurons, which could enhance our understanding of neuronal circuits linked to psychotic and mood disorders.
View Article and Find Full Text PDF

Dopamine receptors and related signaling pathways have long been implicated in pathophysiology and treatment of mental illnesses, including schizophrenia and bipolar disorder. Dopamine signaling may impact neuronal activity by modulation of glutamate neurotransmission. Recent evidence indicates a direct and/or indirect involvement of fragile X-related family proteins (FXR) in the regulation and mediation of dopamine receptor functions.

View Article and Find Full Text PDF

Genetic variants of the fragile X mental retardation syndrome-related protein 1 ( have been associated to mood regulation, schizophrenia, and bipolar disorders. Nonetheless, genetic association does not indicate a functional link of a given gene to neuronal activity and associated behaviors. In addition, interaction between multiple genes is often needed to sculpt complex traits such as behavior.

View Article and Find Full Text PDF

NEUROLIGIN-1 (NLGN1) is a postsynaptic adhesion molecule involved in the regulation of glutamatergic transmission. It has been associated with several features of sleep and psychiatric disorders. Our previous work suggested that transcription of the Nlgn1 gene could be regulated by the transcription factors CLOCK and BMAL1 because they bind to the Nlgn1 gene promoter in vivo.

View Article and Find Full Text PDF