Biochar applications to soils can improve soil fertility by increasing the soil's cation exchange capacity (CEC) and nutrient retention. Because biochar amendment may occur with the applications of organic fertilizers, we tested to which extent composting with farmyard manure increases CEC and nutrient content of charcoal and gasification coke. Both types of biochar absorbed leachate generated during the composting process.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2013
Black carbon (BC), characterized by high microporosity and high specific surface area (SSA), has been demonstrated to have substantial contributions to the sorption of hydrophobic organic chemicals in soils and sediments. Other naturally occurring organic matters provide soft and penetrable sorption domains while may cling to BC and affect its original surface properties. In this work, we studied the sorption sites of a Yangtze River sediment sample with organic carbon (OC) content of 3.
View Article and Find Full Text PDFMany metabolites of organic surfactants such as nonylphenol (NP) and perfluorooctanoic acid (PFOA) are ubiquitously found in the environment and are toxic if not sorbed on soils and sediments. In this study, we quantified the sorption of the NP isomer with the highest endocrine activity, [4-(1-ethyl-1,3-dimethylpentyl) phenol] (NP111), and that of PFOA on Yangtze River sediments and its model components illite, goethite and natural organic matter. The sorption experiments were performed with (14)C-labeled NP111 and PFOA by batch or dialysis techniques.
View Article and Find Full Text PDFThe perfluorooctanoic acid (PFOA) sorption behavior of two commercial multi-walled carbon nanotubes (MWCNTs) (C 150 P from Bayer MaterialScience: BA and C-MWNTs from NanoTechLabs Inc.: CP) was investigated from aqueous solution. The BA nanotubes contained Co/Mn/Mg/Al catalysts both on their outer surface and in the inner bore while CP contained Fe-based catalyst typically within the tubes.
View Article and Find Full Text PDFBy using dialysis equilibrium experiments, the sorption of a branched nonylphenol isomer [4-(1-ethyl-1,3-dimethylpentyl)-phenol] (NP111) on various humic acids (HAs) isolated from river sediments and two reference HAs was studied. The HAs were characterized by solid-state (13)C direct polarization/magic angle spinning nuclear magnetic resonance ((13)C DP/MAS NMR) spectroscopy. Sorption isotherms of NP111 on HAs were described by a linear model.
View Article and Find Full Text PDFSorption of pyrene and phenanthrene to model (illite and charcoal) and natural (Yangtze sediment) geosorbents were investigated by batch techniques using fluorescence spectroscopy. A higher adsorption of phenanthrene was observed with all sorbents, which is related to the better accessibility of smaller molecules to micropores in the molecular sieve sorbents. In addition, pyrene sorption in binary-solute systems with a constant initial concentration of phenanthrene (0.
View Article and Find Full Text PDFThe effect of organic carbon (OC) and mineral surface on the sorption of polycyclic aromatic hydrocarbon (PAH) pyrene molecule to four Yangtze River sediments was investigated by sorption batch techniques using fluorescence spectroscopy. Pyrene sorption to the mineral fraction was estimated with model sorbent illite, the main clay mineral in Yangtze sediment. The Freundlich model fitted sorption to illite and to sediments was normalized to the specific surface area (SSA).
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2010
The goals of the study were to investigate the effects of the soil-water phase ionic strength, mainly monitored by the calcium ion (Ca(2+)) concentration, on the stability behavior of easily dispersed topsoil colloidal clay-sized particles (<2 microm). The aggregation kinetics as a function of the Ca(2+) concentration was monitored by measuring the increase of the particle size over time with photon correlation spectroscopy. The critical coagulation concentrations (CCC) of Ca(2+) were measured.
View Article and Find Full Text PDF