The most widespread technique used to register sets of medical images consists of selecting one image as fixed reference, to which all remaining images are successively registered. This pairwise scheme requires one optimization procedure per pair of images to register. Pairwise mutual information is a common dissimilarity measure applied to a large variety of datasets.
View Article and Find Full Text PDFMultichannel image registration is an important challenge in medical image analysis. Multichannel images result from modalities such as dual-energy CT or multispectral microscopy. Besides, multichannel feature images can be derived from acquired images, for instance, by applying multiscale feature banks to the original images to register.
View Article and Find Full Text PDFThis study describes post-processing methodologies to reduce the effects of physiological motion in measurements of apparent diffusion coefficient (ADC) in the liver. The aims of the study are to improve the accuracy of ADC measurements in liver disease to support quantitative clinical characterisation and reduce the number of patients required for sequential studies of disease progression and therapeutic effects. Two motion correction methods are compared, one based on non-rigid registration (NRA) using freely available open source algorithms and the other a local-rigid registration (LRA) specifically designed for use with diffusion weighted magnetic resonance (DW-MR) data.
View Article and Find Full Text PDFBackground: To evaluate the influence of image registration on apparent diffusion coefficient (ADC) images obtained from abdominal free-breathing diffusion-weighted MR images (DW-MRIs).
Methods: A comprehensive pipeline based on automatic three-dimensional nonrigid image registrations is developed to compensate for misalignments in DW-MRI datasets obtained from five healthy subjects scanned twice. Motion is corrected both within each image and between images in a time series.