Publications by authors named "Jean-Marie Gillardin"

Dysfunction of GABAergic transmission related to abnormal expression of GABA(A) receptor subunits in specific brain regions underlies some pathological anxiety states. Besides involvement of the benzodiazepine recognition site of GABA(A) receptor in the expression of anxiety-like behaviour, the roles of the β(2)/β(3) subunits are not well characterized. To address this issue, the experimental design of this study utilized the GABAergic compound etifoxine (with a preferential effectiveness after binding to a specific site at β(2)/β(3) subunits) tested in two inbred mouse strains: BALB/cByJ and C57BL/6J mice using three behavioural paradigms (light/dark box, elevated plus maze and restraint stress-induced small intestinal transit inhibition) and the t-butylbicyclophosphorothionate-induced convulsions model.

View Article and Find Full Text PDF

Background/aims: Saccharomyces boulardii is a probiotic yeast which has been shown to protect the gastrointestinal microflora from disequilibrium and from associated gastrointestinal disorders. However, no study has explored the potential effect of this probiotic in ulcer models.

Methods: The present study was designed to address this goal using the ibuprofen-induced ulcer rat model.

View Article and Find Full Text PDF

Change in the function of gamma-aminobutyric acid(A) (GABA(A)) receptors attributable to alterations in receptor subunit composition is one of main molecular mechanisms with those affecting the glutamatergic system which accompany prolonged alcohol (ethanol) intake. These changes explain in part the central nervous system hyperexcitability consequently to ethanol administration cessation. Hyperexcitability associated with ethanol withdrawal is expressed by physical signs, such as tremors, convulsions, and heightened anxiety in animal models as well as in humans.

View Article and Find Full Text PDF

Background/aims: Post-operative nausea and vomiting are common adverse events that require administration of anti-emetic compounds, such as the serotonin 5-HT(3) receptor antagonists, but these drugs can also reduce the analgesic efficacy of some analgesics (paracetamol, tramadol).

Methods: The present study was designed to explore the effect of 3 serotonin 5-HT(3) receptor antagonists on the antinociceptive efficacy of another frequently used post-operative analgesic, nefopam, in the mouse writhing and formalin tests.

Results: Pre-treatment with tropisetron, ondansetron or MDL72222 did not significantly modify nefopam antinociception in both tests.

View Article and Find Full Text PDF

In order to further elucidate the mechanism(s) of action of analgesic and antihyperalgesic nefopam, its interactions with the transient receptor potential vanilloid subtype 1 (TRPV1) were investigated. In sensory neurons of rat embryos, dorsal root ganglion (DRG) in culture, nefopam (3-30 mumol/l) and capsazepine (TRPV1 antagonist, 10 mumol/l) prevented intracellular calcium elevation and calcitonin gene-related peptide release induced by vanilloid agonist capsaicin. Unlike nefopam, capsazepine failed to inhibit these same responses induced by KCl excess.

View Article and Find Full Text PDF

1. The aim of the present study was to test the hypothesis that increasing GABAergic neurotransmission is involved in the prevention or treatment of brain oedema. The study was conducted in the well-established rat triethyltin (TET) model of brain oedema and examined the effects of etifoxine, a compound that increases GABAergic neurotransmission through multiple mechanisms, including neurosteroid synthesis.

View Article and Find Full Text PDF

Peripheral nerves show spontaneous regenerative responses, but recovery after injury or peripheral neuropathies (toxic, diabetic, or chronic inflammatory demyelinating polyneuropathy syndromes) is slow and often incomplete, and at present no efficient treatment is available. Using well-defined peripheral nerve lesion paradigms, we assessed the therapeutic usefulness of etifoxine, recently identified as a ligand of the translocator protein (18 kDa) (TSPO), to promote axonal regeneration, modulate inflammatory responses, and improve functional recovery. We found by histologic analysis that etifoxine therapy promoted the regeneration of axons in and downstream of the lesion after freeze injury and increased axonal growth into a silicone guide tube by a factor of 2 after nerve transection.

View Article and Find Full Text PDF

Although citrulline malate (CM; CAS 54940-97-5, Stimol) is used against fatigue states, its anti-asthenic effect remains poorly documented. The objective of this double-blind study was to evaluate the effect of oral ingestion of CM on a rat model of asthenia, using in situ (31)Phosphorus magnetic resonance spectroscopy ((31)P-MRS). Muscle weakness was induced by intraperitoneal injections of Klebsiella pneumoniae endotoxin (lipopolysaccharides at 3 mg/kg) at t(0) and t(0)+24 h.

View Article and Find Full Text PDF

Combinations of analgesics with different mechanisms of action offer the possibility of efficient analgesia with a decrease in side effects as a result of reduced dosages of one or both compounds. Based on a clinical observation of synergism between nefopam, a centrally acting non-opioid that inhibits monoamines reuptake, and ketoprofen, a non-steroidal anti-inflammatory drug, the objective of this study was to further explore this antinociceptive synergy in four distinct animal models of pain (both drugs were administered subcutaneously). Strong antinociceptive properties were observed in the mouse writhing abdominal test with ED50 values of 2.

View Article and Find Full Text PDF

Although depletion in high-energy phosphorylated compounds and mitochondrial impairment have been reported in septic skeletal muscle at rest, their impact on energy metabolism has not been documented during exercise. In this study we aimed to investigate strictly gastrocnemius muscle function non-invasively, using magnetic resonance techniques in endotoxemic rats. Endotoxemia was induced by injecting animals intraperitoneally at t(0) and t(0) + 24 h with Klebsiella pneumoniae lipopolysaccharides (at 3 mg kg(-1)).

View Article and Find Full Text PDF

Rationale: A disordered regulation of neuroactive steroids release in response to acute stress could induce GABAergic dysfunctions underlying anxiety disorders.

Objectives: First, we conducted studies indicating that a short immobilization stress in anxious Balb/cByJ mice produced an anticonvulsive effect. Second, the effects of different positive allosteric modulators (etifoxine, progesterone, clonazepam, and allopregnanolone) of GABA A receptors were compared in a mouse model mimicking the disruption of the acute stress-induced neuroactive steroids release with finasteride (types I and II 5alpha-reductase inhibitor).

View Article and Find Full Text PDF

The potent antidepressant effect of moclobemide, a selective and reversible type A monoamine oxidase (MAO) inhibitor, is clinically established. In view of the ongoing debate on the neuroprotective properties of MAO inhibitors, the present study was undertaken to further define the protective effect of moclobemide in a rat model of neurotoxicant-induced edema. In this model, daily oral triethyltin (TET) administration for 5 consecutive days strongly perturbed the rat behaviour and induced a cerebral edema at the 5th day.

View Article and Find Full Text PDF

In resting skeletal muscle, endotoxemia causes disturbances in energy metabolism that could potentially disturb intracellular pH (pH(i)) during muscular activity. We tested this hypothesis using in situ (31)P-magnetic resonance spectroscopy in contracting rat gastrocnemius muscle. Endotoxemia was induced by injecting rats intraperitoneally at t(0) and t(0) + 24 h with Klebsiella pneumoniae endotoxin (lipopolysaccharides at 3 mg/kg) or saline vehicle.

View Article and Find Full Text PDF

Recent data suggested the existence of a bidirectional relation between depression and neurodegenerative diseases resulting from cerebral ischemia injury. Glutamate, a major excitatory neurotransmitter, has long been recognised to play a key role in the pathophysiology of anoxia or ischemia, due to its excessive accumulation in the extracellular space and the subsequent activation of its receptors. A characteristic response to glutamate is the increase in cytosolic Na(+) and Ca(2+) levels which is due mainly to influx from the extracellular space, with a consequent cell swelling and oxidative metabolism dysfunction.

View Article and Find Full Text PDF

Hyperactivity of the corticotropin-releasing factor (CRF) system occurs in some patients with anxiety disorders and depression. Blockade of CRF1 and CRF2 receptors can underlie the anxiolytic effects of drugs. In the present investigation, in vivo and in vitro studies were designed to determine whether the anxiolytic drug etifoxine, known to enhance GABAergic synaptic transmission, behaves also as a CRF1 and CRF2 receptor antagonist.

View Article and Find Full Text PDF

The non-opiate analgesic nefopam has been shown to inhibit monoamines uptake, but little is known about receptor subtypes effectively involved in its analgesic effect. In vitro binding assays yielded the following measures of affinity (IC(50)): serotonergic 5-HT(2C) (1.4 microM), 5-HT(2A) (5.

View Article and Find Full Text PDF

The peripheral benzodiazepine receptors (PBR) might be involved in certain pathophysiological events, such as anxiety, by stimulating the production of neuroactive steroids in the brain. A recent electrophysiological study has revealed an interaction between PK11195, a PBR ligand and the anxiolytic compound etifoxine at micromolar concentrations. The present work was aimed at further characterizing the etifoxine-PBR interaction.

View Article and Find Full Text PDF

The biotherapeutic agent Saccharomyces boulardii has been shown to inhibit castor oil-induced diarrhoea in rats. The present study investigated the mechanism(s) of this antidiarrhoeal effect in terms of water and electrolyte (sodium, potassium and chloride) changes using two rat models. A single oral dose of S.

View Article and Find Full Text PDF

The biotherapeutic agent Saccharomyces boulardii has been shown to inhibit castor oil-induced diarrhoea in rats in a dose-response fashion, and one of the suggested mechanisms of action included involvement of the nitric oxide pathway. The present study was designed to address this mechanism of action by firstly measuring the effects of S. boulardii on the inducible nitric oxide synthase (iNOS) isoform activity in vitro.

View Article and Find Full Text PDF

The present study explored the role of the histaminergic system in nefopam analgesia based on the structural relationship between nefopam and diphenhydramine. In vitro binding assays revealed that nefopam possesses moderate affinity for histamine H1 and H2 receptor subtypes, with IC50 of 0.8 and 6.

View Article and Find Full Text PDF

Anxiety disorders are often associated with autonomic symptoms, including heart palpitations, sweating, elevation of body temperature and alterations of gastrointestinal motility. Some of the alterations observed in animals exposed to stress are analogous to changes in a number of physiological and endocrine parameters observed in anxious patients. With the purpose to guide further clinical studies in subtypes of anxious patients, etifoxine, a nonbenzodiazepine anxiolytic compound, was evaluated in two rat models of anxiety with measures of physiological manifestations: stress-induced hyperthermia (SIH) and conditioned-fear-stress-induced freezing behavior and activation of colonic motility.

View Article and Find Full Text PDF

In order to specify the nature of interactions between the analgesic compound nefopam and the glutamatergic system, we examined the effects of nefopam on binding of specific ligands on the three main subtypes ionotropic glutamate receptors: N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), or quisqualic acid (QA) and kainic acid (KA) in rat brain membrane preparations. Functionally, we investigated the effects of nefopam against the seizures induced by agonists of these excitatory glutamate receptors in mice. Since the synaptic release of glutamate mainly depends upon the activation of membrane voltage-sensitive sodium channels (VSSCs), the nature of interactions between nefopam and these ionic channels was studied by evaluating the effects of nefopam on binding of 3H-batrachotoxinin, a specific ligand of the VSSCs in rat brain membrane preparations.

View Article and Find Full Text PDF

The objective of this study was to resolve discrepancies regarding the possible antinociceptive synergy between morphine and nefopam in animal models of pain. Firstly, we have examined the antinociceptive activity of nefopam, a nonopioid antinociceptive compound that inhibits monoamine reuptake, in pain models of allodynia and hyperalgesia induced by carrageenan injection, or skin and muscle incision of the rat hind paw. Single subcutaneous administration of nefopam at 30 mg/kg blocked carrageenan- and incision-induced thermal hyperalgesia, and weakly but significantly diminished carrageenan-induced tactile allodynia.

View Article and Find Full Text PDF

We hypothesized that functional changes in the GABAergic system induced by stress would differ between two inbred mouse strains BALB/cByJ and C57BL/6J. We compared the effects of restraint stress and of the anxiolytic drug etifoxine (EFX) on the duration of pentobarbital-induced loss of righting reflex (hypnotic effect) in the two strains. Naive BALB/cByJ mice were less sensitive than naive C57BL/6J mice to the hypnotic effect of pentobarbital.

View Article and Find Full Text PDF

The anxiolytic compound etifoxine (2-ethylamino-6-chloro-4-methyl-4-phenyl-4H-3,1-benzoxazine hydrochloride) potentiates GABA(A) receptor function in cultured neurons (Neuropharmacology 39 (2000) 1523). However, the molecular mechanisms underlying these effects are not known. In this study, we have determined the influence of GABA(A) receptor subunit composition on the effects of etifoxine, using recombinant murine GABA(A) receptors expressed in Xenopus oocytes.

View Article and Find Full Text PDF