Publications by authors named "Jean-Marc Nicaud"

Controllable regulatory elements, like inducible, titratable promoters, are highly desired in synthetic biology toolboxes. A set of previously developed erythritol-inducible promoters along with an engineered Yarrowia lipolytica host strain were shown to be a very potent expression platform. In this study, we push the previously encountered limits of the synthetic promoters' titratability (by the number of upstream motifs) by using a compatible transcription factor, Euf1, as the promoter titrator.

View Article and Find Full Text PDF

Background: In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism-Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities-stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion.

View Article and Find Full Text PDF

This study investigates the use of a Yarrowia lipolytica strain for the bioconversion of syngas-derived acetic acid into β-carotene and lipids. A two-stage process was employed, starting with the acetogenic fermentation of syngas by Clostridium aceticum, metabolising CO, CO, H, to produce acetic acid, which is then utilized by Y. lipolytica for simultaneous lipid and β-carotene synthesis.

View Article and Find Full Text PDF
Article Synopsis
  • An engineered Yarrowia lipolytica strain effectively produced β-carotene and lipids from acetic acid derived from syngas fermentation.
  • The strain demonstrated tolerance to acetic acid concentrations up to 20 g/L, achieving peak lipid content of 33.7% and β-carotene concentration of 13.6 mg/g under specific nutrient conditions.
  • Optimal production in bioreactors occurred at pH 6.0, resulting in lipid content of 22.9% and β-carotene levels of 44 mg/g, highlighting the potential for converting syngas into valuable compounds through bioprocessing.
View Article and Find Full Text PDF

Yarrowia lipolytica is an alternative yeast for heterologous protein production. Based on auto-cloning vectors, a set of 18 chromogenic cloning vectors was developed, each containing one of the excisable auxotrophic selective markers URA3ex, LYS5ex, and LEU2ex, and one of six different promoters: the constitutive pTEF, the phase dependent hybrid pHp4d, and the erythritol-inducible promoters from pEYK1 and pEYL1 derivatives. These vectors allowed to increase the speed of cloning of the gene of interest.

View Article and Find Full Text PDF

Background: Mitochondrial carriers (MCs) can deeply affect the intracellular flux distribution of metabolic pathways. The manipulation of their expression level, to redirect the flux toward the production of a molecule of interest, is an attractive target for the metabolic engineering of eukaryotic microorganisms. The non-conventional yeast Yarrowia lipolytica is able to use a wide range of substrates.

View Article and Find Full Text PDF

The search for new antibodies is a major field of pharmaceutical research that remains lengthy and costly due to the need for successive library screenings. Existing and antibody discovery processes require that libraries are repeatedly subcloned to switch the antibody format or the secretory host, a resource-intensive process. There is an urgent need for an antibody identification platform capable of screening large antibody libraries in their final soluble format.

View Article and Find Full Text PDF

Resistance to environmental stress and synthesis of recombinant proteins (r-Prots) are both complex, strongly interconnected biological traits relying on orchestrated contribution of multiple genes. This, in turn, makes their engineering a challenging task. One of the possible strategies is to modify the operation of transcription factors (TFs) associated with these complex traits.

View Article and Find Full Text PDF

Violacein and deoxyviolacein are bis-indole pigments synthesized by a number of microorganisms. The present study describes the biosynthesis of a mixture of violacein and deoxyviolacein using a genetically modified strain as a production chassis, the subsequent extraction of the intracellular pigments, and ultimately their purification using column chromatography. The results show that the optimal separation between the pigments occurs using an ethyl acetate/cyclohexane mixture with different ratios, first 65:35 until both pigments were clearly visible and distinguishable, then 40:60 to create a noticeable separation between them and recover the deoxyviolacein, and finally 80:20, which allows the recovery of the violacein.

View Article and Find Full Text PDF

Punicic acid (PuA) is a polyunsaturated fatty acid with significant medical, biological, and nutraceutical properties. The primary source of punicic acid is the pomegranate seed oil obtained from fruits of trees that are mainly cultivated in subtropical and tropical climates. To establish sustainable production of PuA, various recombinant microorganisms and plants have been explored as platforms with limited efficiencies.

View Article and Find Full Text PDF

Yarrowia lipolytica has been considered one of the most promising platforms for the microbial production of fatty acids and derived products. The deletion of the faa1 gene coding for an acyl-CoA synthetase leads to the accumulation and secretion of free fatty acids (FFAs) into the extracellular space. The secretion of products is beneficial for the development of microbial cell factories to avoid intracellular inhibitory effects and reduce downstream processing costs.

View Article and Find Full Text PDF

One of the most interesting groups of fatty acid derivates is the group of conjugated fatty acids from which the most researched include: conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA), which are associated with countless health benefits. Sex pheromone mixtures of some insect species, including tobacco horn-worm (), are typical for the production of uncommon C16 long conjugated fatty acids with two and three conjugated double bonds, as opposed to C18 long CLA and CLNA. In this study, desaturases MsexD2 and MsexD3 were expressed in multiple strains of with different genotypes.

View Article and Find Full Text PDF

Background: The oleaginous yeast Yarrowia lipolytica is increasingly used as a chassis strain for generating bioproducts. Several hybrid promoters with different strengths have been developed by combining multiple copies of an upstream activating sequence (UAS) associated with a TATA box and a core promoter. These promoters display either constitutive, phase-dependent, or inducible strong expression.

View Article and Find Full Text PDF

Dysregulation of lipid metabolism is associated with obesity and metabolic diseases but there is also increasing evidence of a relationship between lipid body excess and cancer. Lipid body synthesis requires diacylglycerol acyltransferases (DGATs) which catalyze the last step of triacylglycerol synthesis from diacylglycerol and acyl-coenzyme A. The DGATs and in particular DGAT2, are therefore considered potential therapeutic targets for the control of these pathologies.

View Article and Find Full Text PDF

Background: Yarrowia lipolytica, a nonconventional oleaginous yeast species, has attracted attention due to its high lipid degradation and accumulation capacities. Y. lipolytica is used as a chassis for the production of usual and unusual lipids and lipid derivatives.

View Article and Find Full Text PDF

is a promising oleaginous yeast for producing unusual lipids, such as odd-chain fatty acids (OCFA). Their diverse applications and low natural production make OCFA particularly interesting. In recent studies, inhibiting the catabolic pathway of precursor, boosting precursor pools, and optimizing substrate combination greatly improved the production of OCFA in .

View Article and Find Full Text PDF

The oleaginous yeast Yarrowia lipolytica has emerged as a powerful alternative for biolipid production due to its high capacity for lipid accumulation. Genetic engineering and synthetic biology are promoted forward to improve production and reroute metabolism for high-value compound synthesis. In this context, efficient, modular, and high-throughput compatible cloning and expression system are required to speed up and rationalize research in this field.

View Article and Find Full Text PDF

Due to its pleasant rosy scent, the aromatic alcohol 2-phenylethanol (2-PE) has a huge market demand. Since this valuable compound is used in food, cosmetics and pharmaceuticals, consumers and safety regulations tend to prefer natural methods for its production rather than the synthetic ones. Natural 2-PE can be either produced through the extraction of essential oils from various flowers, including roses, hyacinths and jasmine, or through biotechnological routes.

View Article and Find Full Text PDF

The development of efficient bioprocesses requires inexpensive and renewable substrates. Molasses, a by-product of the sugar industry, contains mostly sucrose, a disaccharide composed of glucose and fructose, both easily absorbed by microorganisms. , a platform for the production of various chemicals, can be engineered for sucrose utilization by heterologous invertase expression, yet the problem of preferential use of glucose over fructose remains, as fructose consumption begins only after glucose depletion what significantly extends the bioprocesses.

View Article and Find Full Text PDF

In recent years, there has been a growing interest in the use of renewable sources for bio-based production aiming at developing sustainable and feasible approaches towards a circular economy. Among these renewable sources, organic wastes (OWs) can be anaerobically digested to generate carboxylates like volatile fatty acids (VFAs), lactic acid, and longer-chain fatty acids that are regarded as novel building blocks for the synthesis of value-added compounds by yeasts. This review discusses on the processes that can be used to create valuable molecules from OW-derived VFAs; the pathways employed by the oleaginous yeast Yarrowia lipolytica to directly metabolize such molecules; and the relationship between OW composition, anaerobic digestion, and VFA profiles.

View Article and Find Full Text PDF

The yeast naturally produces pyomelanin. This pigment accumulates in the extracellular environment following the autoxidation and polymerization of homogentisic acid, a metabolite derived from aromatic amino acids. In this study, we used a chassis strain optimized to produce aromatic amino acids for the de novo overproduction of pyomelanin.

View Article and Find Full Text PDF

Fatty alcohols (FA-OH) are aliphatic unbranched primary alcohols with a chain of four or more carbon atoms. Besides potential industrial applications, fatty alcohols have important biological functions as well. In nature, fatty alcohols are produced as a part of a mixture of pheromones in several insect species, such as moths, termites, bees, wasps, etc.

View Article and Find Full Text PDF

Consolidated bioprocessing (CBP) featuring concomitant hydrolysis of renewable substrates and microbial conversion into value-added biomolecules is considered to bring substantial benefits to the overall process efficiency. The biggest challenge in developing an economically feasible CBP process is identification of bifunctional biocatalyst merging the ability to utilize the substrate and convert it to value-added product with high efficiency. Yarrowia lipolytica is known for its exceptional performance in hydrophobic substrates assimilation and storage.

View Article and Find Full Text PDF

Yarrowia lipolytica is widely used as a microbial producer of lipids and lipid derivatives. Here, we exploited this yeast's potential to generate aromatic amino acids by developing chassis strains optimized for the production of phenylalanine, tyrosine and tryptophan. We engineered the shikimate pathway to overexpress a combination of Y.

View Article and Find Full Text PDF

Microbial production of lipids is one of the promising alternatives to fossil resources with increasing environmental and energy concern. Odd-chain fatty acids (OCFA), a type of unusual lipids, are recently gaining a lot of interest as target compounds in microbial production due to their diverse applications in the medical, pharmaceutical, and chemical industries. In this study, we aimed to enhance the pool of precursors with three-carbon chain (propionyl-CoA) and five-carbon chain (β-ketovaleryl-CoA) for the production of OCFAs in .

View Article and Find Full Text PDF