Publications by authors named "Jean-Marc Malasoma"

Since the early 1970s, numerous systems exhibiting an algebraic structure resembling that of the 1963 Lorenz system have been proposed. These systems have occasionally yielded the same attractor as the Lorenz system, while in other cases, they have not. Conversely, some systems that are evidently distinct from the Lorenz system, particularly in terms of symmetry, have resulted in attractors that bear a resemblance to the Lorenz attractor.

View Article and Find Full Text PDF

In this paper, the dynamics of the paradigmatic Rössler system is investigated in a yet unexplored region of its three-dimensional parameter space. We prove a necessary condition in this space for which the Rössler system can be chaotic. By using standard numerical tools, like bifurcation diagrams, Poincaré sections, and first-return maps, we highlight both asymptotically stable limit cycles and chaotic attractors.

View Article and Find Full Text PDF

Some chaotic attractors produced by three-dimensional dynamical systems without any singular point have now been identified, but explaining how they are structured in the state space remains an open question. We here want to explain-in the particular case of the Wei system-such a structure, using one-dimensional sets obtained by vanishing two of the three derivatives of the flow. The neighborhoods of these sets are made of points which are characterized by the eigenvalues of a 2 × 2 matrix describing the stability of flow in a subspace transverse to it.

View Article and Find Full Text PDF

Type-I intermittencies are common phenomena that are often observed in the neighborhood of periodic windows when a control parameter is varied. These intermittencies usually have a single reinjection channel, that is, a single type of laminar phase was observed. Recently, type-I intermittencies with two reinjection channels were reported in several systems.

View Article and Find Full Text PDF