Intrinsic and extrinsic factors, including lifestyle and sun exposure, can contribute to cell senescence, which impairs skin homeostasis, that may in turn lead to skin aging. Senescent cells have a specific secretome, called the senescence-associated secretory phenotype (SASP) that includes MMPs, CXCLs and S100A8/9. Reducing the SASP with senotherapeutics is a promising strategy to reduce skin aging.
View Article and Find Full Text PDFJ Eur Acad Dermatol Venereol
July 2024
Senescence and epigenetic alterations are two important hallmarks of cellular aging. During aging, cells subjected to stress undergo many cycles of damage and repair before finally entering either apoptosis or senescence, a permanent state of cell cycle arrest. The first biomarkers of senescence to be identified were increased ß-galactosidase activity and induction of p16.
View Article and Find Full Text PDFType 2 Long QT Syndrome (LQT2) is a rare genetic heart rhythm disorder causing life-threatening arrhythmias. We derived induced pluripotent stem cell (iPSC) lines from two patients with LQT2, aged 18 and 6, both carrying a heterozygous missense mutation on the 3rd and 11th exons of KCNH2. The iPSC lines exhibited normal genomes, expressed pluripotent markers, and differentiated into trilineage embryonic layers.
View Article and Find Full Text PDFSenescent cells promote progressive tissue degeneration through the establishment of a combined inflammatory and trophic microenvironment. The cellular senescence state has therefore emerged as a central driving mechanism of numerous age-related diseases, including osteoarthritis (OA), the most common rheumatic disease. Senescence hallmarks are detectable in chondrocytes, synoviocytes and sub-chondral bone cells.
View Article and Find Full Text PDFLife expectancy has drastically increased over the last few decades worldwide, with important social and medical burdens and costs. To stay healthy longer and to avoid chronic disease have become essential issues. Organismal aging is a complex process that involves progressive destruction of tissue functionality and loss of regenerative capacity.
View Article and Find Full Text PDFObjective: Skin ageing is linked to the accumulation of senescent cells and a "senescence-associated secretory phenotype" (SASP). SASP factors include chemokines, cytokines, and small extracellular vesicles (EVs) containing miRNAs. We characterized SASP profile markers in normal human dermal fibroblasts (HDFs) and evaluated the effect of Haritaki fruit extract on these senescence markers.
View Article and Find Full Text PDFRecent advances in cell reprogramming showed that OSKM induction is able to improve cell physiology in vitro and in vivo. Here, we show that a single short reprogramming induction is sufficient to prevent musculoskeletal functions deterioration of mice, when applied in early life. In addition, in old age, treated mice have improved tissue structures in kidney, spleen, skin, and lung, with an increased lifespan of 15% associated with organ-specific differential age-related DNA methylation signatures rejuvenated by the treatment.
View Article and Find Full Text PDFCatecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a genetic disorder characterized by ventricular tachycardia, that can cause the heart to stop beating leading to death. The prevalence is 1/10.000 and in approximately 60% of cases, the syndrome can be due to a mutation of the cardiac ryanodine receptor gene (RyR2).
View Article and Find Full Text PDFCell therapy approaches to treat a wide range of pathologies have greatly benefited from cell reprogramming techniques that allow the conversion of a somatic cell into a pluripotent cell. Many technological developments have been made since the initial major discovery of this biological process. Recently reprogramming methods based on the use of RNA have emerged and seem very promising.
View Article and Find Full Text PDFBackground: The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization.
View Article and Find Full Text PDFAging is associated with a progressive and functional decline of all tissues and a striking increase in many "age-related diseases". Although aging has long been considered an inevitable process, strategies to delay and potentially even reverse the aging process have recently been developed. Here, we review emerging rejuvenation strategies that are based on reprogramming toward pluripotency.
View Article and Find Full Text PDFThe study of molecular mechanism driving osteoarticular diseases like osteoarthritis or osteoporosis is impaired by the low accessibility to mesenchymal stem cells (MSC) from healthy donors (HD) for differential multi-omics analysis. Advances in cell reprogramming have, however, provided both a new source of human cells for laboratory research and a strategy to erase epigenetic marks involved in cell identity and the development of diseases. To unravel the pathological signatures on the MSC at the origin of cellular drifts during the formation of bone and cartilage, we previously developed iPSC from MSC of osteoarthritis donors.
View Article and Find Full Text PDFCongenital myasthenic syndromes (CMS) are a class of inherited disorders affecting the neuromuscular junction, a synapse whose activity is essential for movement. CMS with acetylcholinesterase (AChE) deficiency are caused by mutations in COLQ, a collagen that anchors AChE in the synapse. To study the pathophysiological mechanisms of the disease in human cells, we have generated iPSC from a patient's Peripheral Blood Mononuclear cells (PBMC) by reprogramming these cells using a non-integrative method using Sendai viruses bearing the four Yamanaka factors Oct3/4, Sox2, Klf4, and L-Myc.
View Article and Find Full Text PDFDuchenne Muscular Dystrophy (DMD) is a X-linked degenerative pathology with a prevalence of 1/3600-6000 boys due to the absence of functional dystrophin in muscles. This muscular disease leads to skeletal muscle damages, respiratory failure and in the later stages dilated cardiomyopathy (DCM) leading to heart failure. We generated iPSC lines from three different DMD patients carrying respectively deletions of exons 1, 52 and 55 in the dystrophin gene.
View Article and Find Full Text PDFRothmund-Thomson Syndrome (RTS) is a rare autosomal recessive disease that manifests several clinical features of accelerated aging. These findings include atrophic skin and pigment changes, alopecia, osteopenia, cataracts, and an increased incidence of cancer for patients. Mutations in RECQL4 gene are responsible for cases of RTS.
View Article and Find Full Text PDFTo understand the role of the extensive senescence-associated 3D genome reorganization, we generated genome-wide chromatin interaction maps, epigenome, replication-timing, whole-genome bisulfite sequencing, and gene expression profiles from cells entering replicative senescence (RS) or upon oncogene-induced senescence (OIS). We identify senescence-associated heterochromatin domains (SAHDs). Differential intra- versus inter-SAHD interactions lead to the formation of senescence-associated heterochromatin foci (SAHFs) in OIS but not in RS.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are a unique population of adult stem cells that can differentiate into many cell types. As such, MSCs represent an interesting source of stem cells for use in the clinical treatment of a variety of disorders involving tissue regeneration. It is therefore crucial to investigate further, whether MSCs from patients with bone or cartilage diseases are able to provide iPSCs lines with efficient differentiation ability into MSC derivatives.
View Article and Find Full Text PDFBloom syndrome is characterized by severe pre- and postnatal growth deficiency, immune abnormalities, sensitivity to sunlight, insulin resistance, and a high risk for many cancers that occur at an early age. The diagnosis is established on characteristic clinical features and/or presence of biallelic pathogenic variants in the BLM gene. An increased frequency of sister-chromatid exchanges is also observed and can be useful to diagnose BS patients with weak or no clinical features.
View Article and Find Full Text PDFGenomic integrity of human pluripotent stem cells (hPSCs) is essential for research and clinical applications. However, genetic abnormalities can accumulate during hPSC generation and routine culture and following gene editing. Their occurrence should be regularly monitored, but the current assays to assess hPSC genomic integrity are not fully suitable for such regular screening.
View Article and Find Full Text PDFWerner syndrome (WS) is a rare human autosomal recessive disorder characterized by early onset of aging-associated diseases, chromosomal instability, and cancer predisposition, without therapeutic treatment solution. Major clinical symptoms of WS include common age-associated diseases, such as insulin-resistant diabetes mellitus, and atherosclerosis. WRN, the gene responsible for the disease, encodes a RECQL-type DNA helicase with a role in telomere metabolism.
View Article and Find Full Text PDFOrganismal aging entails a gradual decline of normal physiological functions and a major contributor to this decline is withdrawal of the cell cycle, known as senescence. Senescence can result from telomere diminution leading to a finite number of population doublings, known as replicative senescence (RS), or from oncogene overexpression, as a protective mechanism against cancer. Senescence is associated with large-scale chromatin re-organization and changes in gene expression.
View Article and Find Full Text PDFHigh-throughput next generation sequencing (NGS) technologies enable the detection of biomarkers used for tumor classification, disease monitoring and cancer therapy. Whole-transcriptome analysis using RNA-seq is important, not only as a means of understanding the mechanisms responsible for complex diseases but also to efficiently identify novel genes/exons, splice isoforms, RNA editing, allele-specific mutations, differential gene expression and fusion-transcripts or chimeric RNA (chRNA). We used Crac, a tool that uses genomic locations and local coverage to classify biological events and directly infer splice and chimeric junctions within a single read.
View Article and Find Full Text PDFProgress in assisted reproductive technologies strongly relies on understanding the regulation of the dialogue between oocyte and cumulus cells (CCs). Little is known about the role of long non-coding RNAs (lncRNAs) in the human cumulus-oocyte complex (COC). To this aim, publicly available RNA-sequencing data were analyzed to identify lncRNAs that were abundant in metaphase II (MII) oocytes (BCAR4, C3orf56, TUNAR, OOEP-AS1, CASC18, and LINC01118) and CCs (NEAT1, MALAT1, ANXA2P2, MEG3, IL6STP1, and VIM-AS1).
View Article and Find Full Text PDF