Publications by authors named "Jean-Marc Fromental"

Deformations of heavy elastic cylinders with their axis in the direction of earth's gravity field are investigated. The specimens, made of polyacrylamide hydrogels, are attached from their top circular cross section to a rigid plate. An equilibrium configuration results from the interplay between gravity that tends to deform the cylinders downwards under their own weight, and elasticity that resists these distortions.

View Article and Find Full Text PDF

Blood viscosity decreases with shear stress, a property essential for an efficient perfusion of the vascular tree. Shear thinning is intimately related to the dynamics and mutual interactions of RBCs, the major component of blood. Because of the lack of knowledge about the behavior of RBCs under physiological conditions, the link between RBC dynamics and blood rheology remains unsettled.

View Article and Find Full Text PDF

We demonstrate the instability of the free surface of a soft elastic solid facing downwards. Experiments are carried out using a gel of constant density ρ, shear modulus μ, put in a rigid cylindrical dish of depth h. When turned upside down, the free surface of the gel undergoes a normal outgoing acceleration g.

View Article and Find Full Text PDF

Under the effect of surface tension, a blob of liquid adopts a spherical shape when immersed in another fluid. We demonstrate experimentally that soft, centimeter-size elastic solids can exhibit a similar behavior: when immersed into a liquid, a gel having a low elastic modulus undergoes large, reversible deformations. We analyze three fundamental types of deformations of a slender elastic solid driven by surface stress, depending on the shape of its cross section: a circular elastic cylinder shortens in the longitudinal direction and stretches transversally; the sharp edges of a square based prism get rounded off as its cross sections tend to become circular; and a slender, triangular based prism bends.

View Article and Find Full Text PDF

When a very flexible wire is dipped into a soapy solution, it collapses onto itself. We consider the regions of high curvature where the wire folds back onto itself, enclosing a capillary film. The shapes of these end loops are measured in experiments using soap films and compared to a known similarity solution.

View Article and Find Full Text PDF

We report the observation of a Plateau instability in a thin filament of solid gel with a very small elastic modulus. A longitudinal undulation of the surface of the cylinder reduces its area thereby triggering capillary instability, but is counterbalanced by elastic forces following the deformation. This competition leads to a nontrivial instability threshold for a solid cylinder.

View Article and Find Full Text PDF