We report on a high-performance curvature sensor based on a long-period grating (LPG) in a dual-concentric-core fiber (DCCF). The LPG is inscribed to couple light from the fundamental mode of the central core to the ring-core modes, resulting in the generation of a series of resonant dips. Two adjacent dips shift toward each other when the LPG is bent.
View Article and Find Full Text PDFDielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties.
View Article and Find Full Text PDFWe report broadband transmissions of terahertz radiations through the air channel of thin-wall pipe. The impacts of the wall thickness and of the refractive index of the material on the transmission window bandwidth are investigated. An extension of the bandwidth by at least 5.
View Article and Find Full Text PDFA semiconductor liquid-core optical fiber has been made by simply filling the hollow core of a capillary waveguide with nanoparticles suspended in toluene media. Under a low continuous optical power excitation at 532 nm, the emission of PbSe particles was clearly demonstrated in the infrared region and then partially maintained in the core of the fiber by the total internal reflection mechanism. Finally, due to the guided propagation, which results in multiple absorption effects, a linear shift of the emission peak toward longer wavelengths was observed (~0.
View Article and Find Full Text PDFAn original design of hollow-core photonic crystal fiber composed of a thin silica ring suspended in air by six silica struts is proposed. This structure can be viewed as a simplified Kagomé-lattice fiber reduced to one layer of air holes. By working on the core surround parameters, an efficient antiresonant air guiding was successfully demonstrated.
View Article and Find Full Text PDFAn all-silica photonic bandgap fiber composed of a low-index core surrounded by alternating high- and low-index rings allows us to achieve a large mode area (500 microm(2)) and large chromatic dispersion. Sharp resonances from the even Bragg mode to odd ring modes theoretically lead to 20,000 ps/(nm km) chromatic dispersion when large bends are applied. By nature, sharp resonances are sensitive to inhomogeneities along the fiber length.
View Article and Find Full Text PDFSecond harmonic generation in an air-silica microstructured optical fiber pumped by subnanosecond pulses is used in order to initiate modulation instability processes in normal and anomalous dispersion regimes. This allows us to generate an ultra wide and flat supercontinuum (350-1750 nm), covering the entire transparency window of silica and exhibiting a singlemode transverse profile in visible range.
View Article and Find Full Text PDFWe show that high efficiency stimulated Raman scattering can be obtained using hollow core photonic crystal fiber with the core filled with a low refractive index nonlinear liquid. This new architecture opens new perspectives in the development of nonlinear functions as any kind of nonlinear liquid media can now be used to implement them, with original properties not accessible with silica core fibers.
View Article and Find Full Text PDF