Appendicular lean mass (ALM) associates with mobility and bone mineral density (BMD). While associations between gut microbiota composition and ALM have been reported, previous studies rely on relatively small sample sizes. Here, we determine the associations between prevalent gut microbes and ALM in large discovery and replication cohorts with information on relevant confounders within the population-based Norwegian HUNT cohort (n = 5196, including women and men).
View Article and Find Full Text PDFThe Toll-like receptor 4 (TLR4)/myeloid differentiation protein-2 (MD-2) complex is considered the major receptor of the innate immune system to recognize lipopolysaccharides (LPSs). However, some atypical LPSs with different lipid A and core saccharide moiety structures and compositions than the well-studied enterobacterial LPSs can induce a TLR2-dependent response in innate immune cells. , an opportunistic pathogen, presents an atypical LPS.
View Article and Find Full Text PDFThe Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) innate immunity system is a membrane receptor of paramount importance as therapeutic target. Its assembly, upon binding of Gram-negative bacteria lipopolysaccharide (LPS), and also dependent on the membrane composition, finally triggers the immune response cascade. We have combined ab-initio calculations, molecular docking, all-atom molecular dynamics simulations, and thermodynamics calculations to provide the most realistic and complete 3D models of the active full TLR4 complex embedded into a realistic membrane to date.
View Article and Find Full Text PDFBackground: A wide variety of photosynthetic and non-photosynthetic species sense and respond to light, having developed protective mechanisms to adapt to damaging effects on DNA and proteins. While the biology of UV light-induced damage has been well studied, cellular responses to stress from visible light (400-700 nm) remain poorly understood despite being a regular part of the life cycle of many organisms. Here, we developed a high-throughput method for measuring growth under visible light stress and used it to screen for light sensitivity in the yeast gene deletion collection.
View Article and Find Full Text PDFNew monosaccharide-based lipid A analogues were rationally designed through MD-2 docking studies. A panel of compounds with two carboxylate groups as phosphates bioisosteres, was synthesized with the same glucosamine-bis-succinyl core linked to different unsaturated and saturated fatty acid chains. The binding of the synthetic compounds to purified, functional recombinant human MD-2 was studied by four independent methods.
View Article and Find Full Text PDFMonotopic membrane proteins integrate into the lipid bilayer via reentrant hydrophobic domains that enter and exit on a single face of the membrane. Whereas many membrane-spanning proteins have been structurally characterized and transmembrane topologies can be predicted computationally, relatively little is known about the determinants of membrane topology in monotopic proteins. Recently, we reported the X-ray structure determination of PglC, a full-length monotopic membrane protein with phosphoglycosyl transferase (PGT) activity.
View Article and Find Full Text PDFLipopolysaccharides (LPS) are potent activator of the innate immune response through the binding to the myeloid differentiation protein-2 (MD-2)/toll-like receptor 4 (TLR4) receptor complexes. Although a variety of LPSs have been characterized so far, a detailed molecular description of the structure-activity relationship of the lipid A part has yet to be clarified. Photosynthetic strains, symbiont of legumes, express distinctive LPSs bearing very long-chain fatty acids with a hopanoid moiety covalently linked to the lipid A region.
View Article and Find Full Text PDFThe structure-activity relationship was investigated in a series of synthetic TLR4 antagonists formed by a glucosamine core linked to two phosphate esters and two linear carbon chains. Molecular modeling showed that the compounds with 10, 12, and 14 carbons chains are associated with higher stabilization of the MD-2/TLR4 antagonist conformation than in the case of the C16 variant. Binding experiments with human MD-2 showed that the C12 and C14 variants have higher affinity than C10, while the C16 variant did not interact with the protein.
View Article and Find Full Text PDFWe recently reported on the activity of cationic amphiphiles in inhibiting TLR4 activation and subsequent production of inflammatory cytokines in cells and in animal models. Starting from the assumption that opportunely designed cationic amphiphiles can behave as CD14/MD-2 ligands and therefore modulate the TLR4 signaling, we present here a panel of amphiphilic guanidinocalixarenes whose structure was computationally optimized to dock into MD-2 and CD14 binding sites. Some of these calixarenes were active in inhibiting, in a dose-dependent way, the LPS-stimulated TLR4 activation and TLR4-dependent cytokine production in human and mouse cells.
View Article and Find Full Text PDFThe eukaryotic translation Elongation Factor 2 (eEF2) is an essential enzyme in protein synthesis. eEF2 contains a unique modification of a histidine (His699 in yeast; HIS) into diphthamide (DTA), obtained via 3-amino-3-carboxypropyl (ACP) and diphthine (DTI) intermediates in the biosynthetic pathway. This essential and unique modification is also vulnerable, in that it can be efficiently targeted by NAD(+)-dependent ADP-ribosylase toxins, such as diphtheria toxin (DT).
View Article and Find Full Text PDFToll-like receptor 4 (TLR4), along with its accessory protein myeloid differentiation factor 2 (MD-2), builds a heterodimeric complex that specifically recognizes lipopolysaccharides (LPS), which are present on the cell wall of Gram-negative bacteria, activating the innate immune response. Some TLR4 modulators are undergoing preclinical and clinical evaluation for the treatment of sepsis, inflammatory diseases, cancer and rheumatoid arthritis. Since the relatively recent elucidation of the X-ray crystallographic structure of the extracellular domain of TLR4, research around this fascinating receptor has risen to a new level, and thus, new perspectives have been opened.
View Article and Find Full Text PDF