Publications by authors named "Jean-Manuel Segura"

Template-directed methods are emerging as some of the most effective means to conjugate payloads at selective sites of monoclonal antibodies (mAbs). We have previously reported a method based on an engineered Fc-III reactive peptide to conjugate a radionuclide chelator to K317 of antibodies with the concomitant release of the Fc-III peptide ligand. Here, our method was redesigned to target two lysines proximal to the Fc-III binding site, K248 and K439.

View Article and Find Full Text PDF

Many therapeutic drugs require monitoring of their concentration in blood followed by dose adjustments in order to ensure efficacy while minimizing adverse effects. It would be highly desirable to perform such measurements rapidly and with reduced sample volumes to support point-of-care testing. Here, we demonstrate that the concentration of small therapeutics can be determined in whole blood within paper-like membranes using Fluorescence Polarization Immunoassay (FPIA).

View Article and Find Full Text PDF

Antibodies are an attractive therapeutic modality for cancer treatment as they allow the increase of the treatment response rate and avoid the severe side effects of chemotherapy. Notwithstanding the strong benefit of antibodies, the efficacy of anti-cancer antibodies can dramatically vary among patients and ultimately result in no response to the treatment. Here, we have developed a novel means to regioselectively label the Fc domain of any therapeutic antibody with a radionuclide chelator in a single step chemistry, with the aim to study by SPECT/CT imaging if the radiolabeled antibody is capable of targeting cancer cells .

View Article and Find Full Text PDF

Numerous projects and industrial and academic collaborations benefit from state-of-the-art facilities and expertise in analytical chemistry available at the Swiss Universities of Applied Sciences. This review summarizes areas of expertise in analytical sciences at the University of Applied Sciences and Arts Northwestern Switzerland (FHNW), the University of Applied Sciences and Arts Western Switzerland (HES-SO), and the Zurich University of Applied Sciences (ZHAW). We briefly discuss selected projects in different fields of analytical sciences.

View Article and Find Full Text PDF

Background: Immunosuppressive drugs (ISD) are an essential tool in the treatment of transplant rejection and immune-mediated diseases. Therapeutic drug monitoring (TDM) for determination of ISD concentrations in biological samples is an important instrument for dose personalization for improving efficacy while reducing side effects. While currently ISD concentration measurements are performed at specialized, centralized facilities, making the process complex and laborious for the patient, various innovative technical solutions have recently been proposed for bringing TDM to the point-of-care (POC).

View Article and Find Full Text PDF

This article provides an overview of activities in the fields of continuous processes, flow chemistry and microreactors at the Universities of Applied Sciences in Switzerland.

View Article and Find Full Text PDF

Synthetic peptides derived from the heptad repeat (HR) of fusion (F) proteins can be used as dominant negative inhibitors to inhibit the fusion mechanism of class I viral F proteins. Here, we have performed a stapled-peptide scan across the HR2 domain of the respiratory syncytial virus (RSV) F protein with the aim to identify a minimal domain capable of disrupting the formation of the postfusion six-helix bundle required for viral cell entry. Constraining the peptides with a single staple was not sufficient to inhibit RSV infection.

View Article and Find Full Text PDF

Understanding how wines react towards oxidation is of primary importance. Here, a novel approach was developed based on the quantitative determination of the key intermediate H2O2 produced during accelerated oxidation by ambient oxygen. The assay makes use of the conversion of the non-fluorescent Amplex Red substrate into a fluorescent product in presence of H2O2.

View Article and Find Full Text PDF

Fluorescence techniques are widely applied in protein research owing to their specificity and sensitivity, but require prior fluorescent labeling. Here we show a novel approach to optimize labeling protocols by monitoring labeling reactions using fluorescence polarization: the larger molecular mass of the fluorescent protein conjugate compared to the dye alone results in an increase in fluorescence anisotropy during the reaction. Thereby, labeling of lysozyme with fluorescein isothiocyanate or carboxyfluorescein succinimidyl ester could be monitored and the influence of parameters such as the pH could be quantitatively assessed.

View Article and Find Full Text PDF

The biological properties of a protein critically depend on its conformation, which can vary as a result of changes in conditions such as pH or following the addition of various substances. Being able to reliably assess the quality of protein structures under various conditions is therefore of crucial importance. Infrared (IR) spectroscopy of the Amide I band of proteins is a powerful method for the determination of protein conformations and further allows the analysis of continuously flowing solutions of the target molecule.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChR) in muscle fibers are densely packed in the postsynaptic region at the neuromuscular junction. Rapsyn plays a central role in directing and clustering nAChR during cellular differentiation and neuromuscular junction formation; however, it has not been demonstrated whether rapsyn is the only cause of receptor immobilization. Here, we used single-molecule tracking methods to investigate nAChR mobility in plasma membranes of myoblast cells during their differentiation to myotubes in the presence and absence of rapsyn.

View Article and Find Full Text PDF

CD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility.

View Article and Find Full Text PDF

Sensitive live-cell fluorescence microscopy and single-molecule imaging are severely limited by rapid photobleaching of fluorescent probes. Herein, we show how to circumvent this problem using a novel, generic labeling strategy. Small nickel-nitrilotriacetate fluorescent probes are reversibly bound to oligohistidine sequences of exposed proteins on cell surfaces, permitting selective observation of the proteins by fluorescence microscopy.

View Article and Find Full Text PDF

Supported cell-membrane sheets are promising in vitro systems to investigate the properties of membranes with native protein/lipid composition, in particular their sub-compartmentalization and the differential localization of proteins associated to them. While such studies are usually performed using static microscopy techniques, we demonstrate here the potential offered by dynamic diffusion measurements. Whereas the overall fluidity of the lipid bilayer was preserved, the preparation of the membrane sheets led to the selective immobilization of extracellular and transmembrane (TM) glycosylated proteins and the anchored proteins/lipids associated with them.

View Article and Find Full Text PDF

We present fluorescence-excitation spectra of individual light-harvesting 3 (LH3 or B800-820) complexes of Rhodopseudomonas acidophila at 1.2 K. The optical single-molecule studies were employed to investigate the electronic structure as well as the conformational flexibility of the individual pigment-protein complexes.

View Article and Find Full Text PDF

Fluorescence resonance energy transfer (FRET) is a powerful technique to reveal interactions between membrane proteins in live cells. Fluorescence labeling for FRET is typically performed by fusion with fluorescent proteins (FP) with the drawbacks of a limited choice of fluorophores, an arduous control of donor-acceptor ratio and high background fluorescence arising from intracellular FPs. Here we show that these shortcomings can be overcome by using the acyl carrier protein labeling technique.

View Article and Find Full Text PDF

The lateral organization of a prototypical G protein-coupled receptor, the neurokinin-1 receptor (NK1R), was investigated in living cells by fluorescence resonance energy transfer (FRET) microscopy, taking advantage of the recently developed acyl carrier protein (ACP) labeling technique. The NK1R was expressed as fusion protein with ACP to which small fluorophores were then covalently bound. Our approach allowed the recording of FRET images of receptors on living cells with unprecedented high signal-to-noise ratios and a subsequent unequivocal quantification of the FRET data owing to (i) the free choice of optimal fluorophores, (ii) the labeling of NK1Rs exclusively on the cell surface, and (iii) the precise control of the donor-acceptor molar ratio.

View Article and Find Full Text PDF

With the reversible sequential (ReSeq) binding assay,we present a novel approach for the ultrasensitive profiling of receptor function in single living cells. This assay is based on the repetitive application of fluorescent ligands that have fast association-dissociation kinetics. We chose the nicotinic-acetylcholine receptor (nAChR) as a prototypical example and performed ReSeq equilibrium, kinetic, and competition-binding assays using fluorescent derivatives of the antagonist alpha-conotoxin GI (alpha-CnTx).

View Article and Find Full Text PDF

CdSe quantum dots (QDs) with a high fluorescence quantum yield of 25% and a narrow size distribution were synthesized in a single step in water using glutathione as a stabilizing molecule. The exceptional optical properties enabled for the first time the detection of in-water-prepared single quantum dots at room temperature. For application as fluorescent bioanalytical probes, the QDs were coated with streptavidin.

View Article and Find Full Text PDF

CD8+ cytotoxic T lymphocyte (CTL) can recognize and kill target cells that express only a few cognate major histocompatibility complex class I-peptide (pMHC) complexes. To better understand the molecular basis of this sensitive recognition process, we studied dimeric pMHC complexes containing linkers of different lengths. Although dimers containing short (10-30-A) linkers efficiently bound to and triggered intracellular calcium mobilization and phosphorylation in cloned CTL, dimers containing long linkers (> or = 80 A) did not.

View Article and Find Full Text PDF