Community colleges are frequently an affordable, accessible entrance to a Science, Technology, Engineering, and Mathematics (STEM) education and career, but the transition from a 2-year program to a 4-year institution can be tumultuous. In this mixed-methods study, we explore the experiences of transfer and prospective transfer students. Through surveys and interviews, we identify the challenges faced by and the supports desired by biology transfer students.
View Article and Find Full Text PDFMorphological changes in apoptotic cells provide essential markers for defining and detection of apoptosis as a fundamental mechanism of cell death. Among these changes, the nuclear fragmentation and condensation have been regarded as the important markers but quantitative characterization of these changes is yet to be achieved. We have acquired confocal image stacks of 206 viable and apoptotic MCF-7 cells stained by three fluorescent dyes.
View Article and Find Full Text PDFInt J Biol Macromol
August 2016
Alzheimer's disease (AD) is the only one among top ten diseases in USA that cannot be cured, prevented or slowed down. At molecular level the mechanism of onset has been closely associated with mis-folding of Aβ40 and Aβ42 and is well supported by the genetic data for AD. Extensive research efforts have led to identification of factors and metal ions that could manipulate Aβ equilibrium, especially Ca(2+).
View Article and Find Full Text PDFHox genes encode transcription factors that function to pattern regional tissue identities along the anterior-posterior axis during animal embryonic development. Divergent nested Hox gene expression patterns within the posterior pharyngeal arches may play an important role in patterning morphological variation in the pharyngeal jaw apparatus (PJA) between evolutionarily divergent teleost fishes. Recent gene expression studies have shown the expression patterns from all Hox paralog group (PG) 2-6 genes in the posterior pharyngeal arches (PAs) for the Japanese medaka (Oryzias latipes) and from most genes of these PGs for the Nile tilapia (Oreochromis niloticus).
View Article and Find Full Text PDFPhylogenetic reconstructions suggest that the ancestral osteichthyan Hox paralog group 2 gene complement was composed of two genes, Hoxa2 and b2, both of which have been retained in tetrapods, but only one of which functions as a selector gene of second pharyngeal arch identity (PA2). Genome duplication at the inception of the teleosts likely generated four Hox PG2 genes, only two of which, hoxa2b and b2a, have been preserved in zebrafish, where they serve as functionally redundant PA2 selector genes. Evidence from our laboratory has shown that other telelosts, specifically striped bass and Nile tilapia, harbor three transcribed Hox PG2 genes, hoxa2a, a2b, and b2a, with unspecified function(s).
View Article and Find Full Text PDFThe evolution of a specialized pharyngeal jaw apparatus (PJA) has been argued to be the key evolutionary innovation that allowed the explosive adaptive radiation of cichlid fishes in East African lakes. Subsequent studies together with recent molecular phylogenies have shown that similar innovations evolved independently several times within the teleosts, which poses the questions: (1) how similar are the developmental mechanisms responsible for these changes in divergent taxa and (2) how did such complex features arise independently in evolution? A detailed knowledge of PJA development in cichlids and other teleosts is needed to address these questions. Here, we provide a detailed account of the development of the PJA in one species of cichlid, the Nile tilapia (Oreochromis niloticus), from the early segmentation and patterning of its embryonic precursors - pharyngeal arches 3 to 7 - to its ossification.
View Article and Find Full Text PDFIonizing radiation (IR) induces two classes of complex DNA damage, double-strand breaks (DSBs) and non-DSB bi-stranded oxidative clustered DNA lesions (OCDLs). OCDLs may consist of single strand breaks (SSBs), oxidized purines/pyrimidines and abasic sites within 5-10bp. These significant biological lesions are hypothesized to challenge the repair machinery and carry a high mutagenic potential.
View Article and Find Full Text PDFHox paralog group 2 (PG2) genes function to specify the development of the hindbrain and pharyngeal arch-derived structures in the Osteichthyes. In this article, we describe the cDNA cloning and embryonic expression analysis of Japanese medaka (Oryzias latipes) Hox PG2 genes. We show that there are only two functional canonical Hox genes, hoxa2a and b2a, and that a previously identified hoxa2b gene is a transcribed pseudogene, psihoxa2b.
View Article and Find Full Text PDFVertebrate evolution is characterized by gene and genome duplication events. There is strong evidence that a whole-genome duplication occurred in the lineage leading to the teleost fishes. We have focused on the teleost hoxb1 duplicate genes as a paradigm to investigate the consequences of gene duplication.
View Article and Find Full Text PDFThe hindbrain and pharyngeal arch-derived structures of vertebrates are determined, at least in part, by Hox paralog group 2 genes. In sarcopterygians, the Hoxa2 gene alone appears to specify structures derived from the second pharyngeal arch (PA2), while in zebrafish (Danio rerio), either of the two Hox PG2 genes, hoxa2b or hoxb2a, can specify PA2-derived structures. We previously reported three Hox PG2 genes in striped bass (Morone saxatilis), including hoxa2a, hoxa2b, and hoxb2a and observed that only HoxA cluster genes are expressed in PA2, indicative that they function alone or together to specify PA2.
View Article and Find Full Text PDFHere, we report the cloning and expression analysis of two previously uncharacterized paralogs group 2 Hox genes, striped bass hoxa2a and hoxa2b, and the developmental regulatory gene egr2. We demonstrate that both Hox genes are expressed in the rhombomeres of the developing hindbrain and the pharyngeal arches albeit with different spatio-temporal distributions relative to one another. While both hoxa2a and hoxa2b share the r1/r2 anterior boundary of expression characteristic of the hoxa2 paralog genes of other species, hoxa2a gene expression extends throughout the hindbrain, whereas hoxa2b gene expression is restricted to the r2-r5 region.
View Article and Find Full Text PDFSomatolactin (SL) is a pituitary hormone belonging to the growth hormone/prolactin superfamily, with recognizable homologues in all fish taxa examined to date. Although sequences from most fish share reasonably high sequence identity, several more highly divergent SLs have been reported. Goldfish SL and a second SL protein found in rainbow trout (rtSLP) are remarkably different from each other and also dissimilar to other SLs.
View Article and Find Full Text PDFThe study of Hox clusters and genes provides insights into the evolution of genomic regulation of development. Derived ray-finned fishes (Actinopterygii, Teleostei) such as zebrafish and pufferfish possess duplicated Hox clusters that have undergone considerable sequence evolution. Whether these changes are associated with the duplication(s) that produced extra Hox clusters is unresolved because comparison with basal lineages is unavailable.
View Article and Find Full Text PDFHox gene expression is regulated by a complex array of cis-acting elements that control spatial and temporal gene expression in developing embryos. Here, we report the isolation of the striped bass Hoxb2a gene, comparison of its expression to the orthologous gene from zebrafish, and comparative genomic analysis of the upstream regulatory region to that of other vertebrates. Comparison of the Hoxb2a gene expression patterns from striped bass to zebrafish revealed similar expression patterns within rhombomeres 3, 4, and 5 of the hindbrain but a notable absence of expression in neural crest tissues of striped bass while neural crest expression is observed in zebrafish and common to other vertebrates.
View Article and Find Full Text PDFRecent studies have suggested important functions for proteoglycan-associated chondroitin sulfate glycosaminoglycans (GAGs) during embryonic and larval development in numerous organisms, including the teleost. Little is known, however, about the specific distribution of different chondroitin sulfate GAGs during early development. The present study utilized immunohistochemistry to localize chondroitin sulfate GAG antigens during development of the striped bass (Morone saxatilis).
View Article and Find Full Text PDF