Publications by authors named "Jean-Louis Morel"

The Ni hyperaccumulator Odontarrhena chalcidica (formerly Alyssum murale), exhibits a significant capacity to accumulate Zn in the roots. However, the molecular mechanisms underlying the variation in Ni and Zn accumulation are poorly understood. Here, we isolated a homolog of heavy metal ATPase 3 from O.

View Article and Find Full Text PDF

Serious arsenic (As) contaminations could commonly result from the oxidative dissolution of As-containing sulfide minerals, such as arsenopyrite (FeAsS). Pyrite (Py) and calcite (Cal) are two typically co-existing reactive minerals and represent different geological scenarios. Previous studies have shown that a high proportion of Py can generate a stronger galvanic effect and acid dissolution, thereby significantly promoting the release of arsenic.

View Article and Find Full Text PDF

Due to the widely discharge of chromium (Cr) by mining and smelting industries, etc., contamination of paddy soils and rice has become serious problems. Therefore it is crucial to explore how rice takes up Cr.

View Article and Find Full Text PDF

Biological aqua crust (biogenic aqua crust-BAC) is a potentially sustainable solution for metal(loid) bioremediation in global water using solar energy. However, the key geochemical factors and underlying mechanisms shaping microbial communities in BAC remain poorly understood. The current study aimed at determining the in situ metal(loid) distribution and the key geochemical factors related to microbial community structure and metal(loid)-related genes in BAC of a representative Pb/Zn tailing pond.

View Article and Find Full Text PDF

The tailings soil originating from an abandoned sulfur-iron mine in Sichuan Province, China, exhibits elevated concentrations of heavy metals (HMs) and possesses limited soil conservation capacity. Variability soil particle size fractions (PSFs) contributes to an increased risk of HMs ion migration. Existing research on HMs behavior has focused on the bulk soil scale, resulting in a dearth of comprehensive information concerning different particle sizes and colloid scales.

View Article and Find Full Text PDF

Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil.

View Article and Find Full Text PDF

Hexafluoropropylene oxide (HFPO) homologues, which are important alternatives to perfluorooctanoic acid, have been frequently identified in crops. Although exposure to HFPO homologues via crops may pose non-negligible threats to humans, their impact on crops is still unknown. In this study, the accumulation, transport, and distribution mechanisms of three HFPO homologues in lettuce were investigated at the plant, tissue, and cell levels.

View Article and Find Full Text PDF

Background: Understanding the ecological and environmental functions of phototrophic biofilms in the biological crust is crucial for improving metal(loid) (e.g. Cd, As) bioremediation in mining ecosystems.

View Article and Find Full Text PDF

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern .

View Article and Find Full Text PDF

To cope with the urgent and unprecedented demands for rare earth elements (REEs) in sophisticated industries, increased attention has been paid to REE recovery from recycled streams. However, the similar geochemical behaviors of REEs and transition metals often result in poor separation performance due to nonselectivity. Here, a unique approach based on the selective transformation between ceria sulfation and iron/manganese mineralization was proposed, leading to the enhancement of the selective separation of REEs.

View Article and Find Full Text PDF

The increasing demand for Rare Earth Elements (REEs) and the depletion of mineral resources motivate sustainable strategies for REE recovery from alternative unconventional sources, such as REE hyperaccumulator. The greatest impediment to REE agromining is the difficulty in the separation of REEs and other elements from the harvested biomass (bio-ore). Here, we develop a sulfuric acid assisted ethanol fractionation method for processing D.

View Article and Find Full Text PDF

Soils harbor some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. Numerous parameters, intrinsic to plant physiology, life history and the soil itself, can influence the structure of rhizomicrobial communities. While our knowledge of rhizosphere microbial diversity is increasing, opinion is divided as to whether the factors that most impact this diversity are abiotic, climatic or plant selection.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined abandoned ion-adsorption rare earth element (REE) mine tailings in south China, focusing on the natural ecological succession and nutrient dynamics over a 15-year period.
  • Biocrusts were found to be the first colonizers, peaking at 10% coverage after 10 years before being replaced by pioneer plants like Miscanthus sinensis after 15 years, indicating a rapid ecological progression.
  • The research highlighted the role of biocrusts in accumulating nutrients and REEs, as well as the changes in microbial communities, suggesting that biological processes significantly influence the redistribution of contaminants in these environments.
View Article and Find Full Text PDF
Article Synopsis
  • Efforts to restore degraded mine lands face challenges due to unclear drivers of biodiversity recovery and ecosystem function.
  • Plant-soil feedbacks (PSFs) play a crucial role in shaping vegetation and community structure, but mining disturbances create unique conditions that require special consideration.
  • Understanding PSFs can help predict and improve ecosystem recovery, but further research is needed to address existing challenges in this field.
View Article and Find Full Text PDF

The exploitation of ion-adsorption rare earth element (REE) deposits in South China has left large areas of mine tailings. However, limited remediation practices on these tailings have been reported, and how the remediation strategies and economic plants cultivation affect the biogeochemical cycles of nutrients, REEs and Al remains unclear. The aim of the present study was to investigate the effects of the combination of the addition of soil amendment and the root development and activity of a fiber plant ramie (Boehmeria nivea L.

View Article and Find Full Text PDF

Chromium (Cr) is a toxic heavy metal that is heavily discharged into the soil environment due to its widespread use and mining. High Cr levels may pose toxic hazards to plants, animals and humans, and thus have attracted global attention. Recently, much progress has been made in elucidating the mechanisms of Cr uptake, transport and accumulation in soil-plant systems, aiming to reduce the toxicity and ecological risk of Cr in soil; however, these topics have not been critically reviewed and summarised to date.

View Article and Find Full Text PDF

In this study, N-functionalized biochars with varied structural characteristics were designed by loading poplar leaf with different amounts of urea at 1:1 and 1:3 ratios through pyrolysis method. The addition of urea significantly increased the N content of biochar and facilitated the formation of amine (-NH-, -NH), imine (-HCNH), benzimidazole (-CHN), imidazole (-CHN), and pyrimidine (-CHN) groups due to substitution reaction and Maillard reaction. The effect of pH on Cr(VI) removal suggested that decrease in solution pH favored the formation of electrostatic attraction between the protonated functional groups and HCrO.

View Article and Find Full Text PDF

The plant Phytolacca americana L. simultaneously hyperaccumulates manganese (Mn) and rare earth elements (REEs), but the underlying mechanisms are largely unknown. In this study, P.

View Article and Find Full Text PDF

Hyperaccumulators have exceptional phloem translocation capability for heavy metals. This study aims at quantifying the mobility and accumulation of Ni and Co via the phloem in the model hyperaccumulator Noccaea caerulescens. "Phloem loading capability (PLC)," which is calculated by the "Metal content in phloem sap/Metal content in leaves," was introduced to evaluate the metal phloem mobility, while "Phloem mobility value (PMV)" was used for the normalization of PLC, which sets the PLC of Sr as PMV 0 and that of Rb as 100.

View Article and Find Full Text PDF

Background: The fern Dicranopteris linearis is a hyperaccumulator of rare earth elements (REEs), aluminium (Al) and silicon (Si). However, the physiological mechanisms of tissue-level tolerance of high concentrations of REE and Al, and possible interactions with Si, are currently incompletely known.

Methods: A particle-induced X-ray emission (μPIXE) microprobe with the Maia detector, scanning electron microscopy with energy-dispersive spectroscopy and chemical speciation modelling were used to decipher the localization and biochemistry of REEs, Al and Si in D.

View Article and Find Full Text PDF

Biocrust-mediated in situ bioremediation could be an alternative strategy to mitigate metal(loid) pollution in aquatic habitats. To better understand the roles of biocrusts in regulating the fate of metal(loid)s, we examined the morphology, composition and structure of biological aqua crusts (BAC) developed in the mine drainage of a representative Pb/Zn tailing pond, and tested their effectiveness for immobilizing typical metal(loid)s. Unlike terrestrial biocrusts, BAC results from an assembly of compounds produced by the strong microbial activity and mineral compounds present in the aquatic environment.

View Article and Find Full Text PDF

Increasing use of emerging per- and polyfluoroalkyl substances (PFASs) has caused extensive concerns around the world. Effective detection methods to trace their pollution characteristics and environmental behaviors in complex soil-crop systems are urgently needed. In this study, a reliable and matrix effect (ME)-free method was developed for simultaneous determination of 14 legacy and emerging PFASs, including perfluorooctanoic acid, perfluorooctane sulfonate, 6 hydrogenous PFASs, 3 chlorinated PFASs, and 3 hexafluoropropylene oxide homologues, in 6 crop (the edible parts) and 5 soil matrices using ultrasonic extraction combined with solid-phase extraction and ultraperformance liquid chromatography-mass spectrometry (MS)/MS.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperaccumulator plants, like Berkheya coddii from South Africa, can concentrate metals such as nickel and cobalt from low-grade soils into their tissues, making them valuable for agromining.
  • This study investigated how cobalt affects nickel uptake and translocation in B. coddii, finding that cobalt in the soil limits nickel absorption and is primarily stored in the lower leaves of the plant.
  • Despite the presence of high nickel levels, B. coddii shows good tolerance and, with proper agronomic practices, could yield significant amounts of both nickel and cobalt, making it a potential crop for areas with specific soil mineral compositions.
View Article and Find Full Text PDF

Phytomining technology cultivates hyperaccumulator plants on heavy metal contaminated soils, followed by biomass harvesting and incineration to recover valuable metals, offering an opportunity for resource recycling and soil remediation. Large areas of ultramafic soils, naturally rich in nickel (Ni), are present in numerous places around the world. As an environmentally friendly and cost-effective soil remediation technology, phytomining has a broad application prospect in such areas and thus has attracted great attention from global researchers.

View Article and Find Full Text PDF

Metal tailings are potential sources of strong environmental pollution. In situ remediation involves the installation of a plant cover to stabilize materials and pollutants. Whether metal(loid)s are effectively immobilized in remediated tailing ponds submitted to heavy rainfall remains uncertain.

View Article and Find Full Text PDF