Publications by authors named "Jean-Louis Molat"

Nitric oxide donors are known to produce headache in healthy as well as migraine subjects, and to induce extracephalic cutaneous hypersensitivity in rodents. However, little is known on the effect of nitric oxide donors on cephalic cutaneous sensitivity. Combining behavioral, immunohistochemical, and in vivo electrophysiological approaches, this study investigated the effect of systemic administration of the nitric oxide donor, isosorbide dinitrate (ISDN), on cephalic and extracephalic cutaneous sensitivity and on neuronal activation within the medullary dorsal horn (MDH) in the rat.

View Article and Find Full Text PDF

The expression and contribution of μ (MOPR) and δ opioid receptors (DOPR) in polymodal nociceptors have been recently challenged. Indeed, MOPR and DOPR were shown to be expressed in distinct subpopulation of nociceptors where they inhibit pain induced by noxious heat and mechanical stimuli, respectively. In the present study, we used electrophysiological measurements to assess the effect of spinal MOPR and DOPR activation on heat-induced and mechanically induced diffuse noxious inhibitory controls (DNICs).

View Article and Find Full Text PDF

Sensory maps for pain can be modified by deafferentation or injury, and such plasticity has been attributed mainly to changes in the convergence of projections in "bottom-up" mechanisms. We addressed the possible contribution of "top-down" mechanisms by investigating the functional significance of corticofugal influences from the primary somatosensory cortex (S1) to the ventroposterolateral thalamic nucleus (VPL). The strong convergence of spinal and lemniscal afferents to the VPL and the close correspondence between afferents and efferents within the VPL-S1 network suggest the existence of functionally related thalamocortical circuits that are implicated in the detection of innocuous and noxious inputs.

View Article and Find Full Text PDF

Activation of afferent nociceptive pathways is subject to activity-dependent plasticity, which may manifest as windup, a progressive increase in the response of dorsal horn nociceptive neurons to repeated stimuli. At the cellular level, N-methyl-d-aspartate (NMDA) receptor activation by glutamate released from nociceptive C-afferent terminals is currently thought to generate windup. Most of the wide dynamic range nociceptive neurons that display windup, however, do not receive direct C-fibre input.

View Article and Find Full Text PDF